@@ -610,7 +610,9 @@ def make_preds_core(
610
610
try :
611
611
X
612
612
ret_preds = mod .predict (
613
- [X , X_sum , X_global , X_hc ], batch_size = self .batch_num_tf , verbose = int (self .verbose )
613
+ [X , X_sum , X_global , X_hc ],
614
+ batch_size = self .batch_num_tf ,
615
+ verbose = int (self .verbose ),
614
616
).flatten ()
615
617
except UnboundLocalError :
616
618
logger .debug ("X is empty, skipping..." )
@@ -832,27 +834,39 @@ def calibrate_preds_func_pygam(
832
834
# measured_tr = list(measured_tr)
833
835
834
836
# Fit a SplineTransformer model
835
- spline = SplineTransformer (degree = 4 , n_knots = int (len (measured_tr ) / 100 ) + 5 )
836
- spline_model = make_pipeline (spline , LinearRegression ())
837
- spline_model .fit (predicted_tr .reshape (- 1 , 1 ), measured_tr )
837
+ if self .deeplc_retrain :
838
+ spline = SplineTransformer (degree = 2 , n_knots = 10 )
839
+ linear_model = LinearRegression ()
840
+ linear_model .fit (predicted_tr .reshape (- 1 , 1 ), measured_tr )
838
841
839
- # Determine the top 10% of data on either end
840
- n_top = int (len (predicted_tr ) * 0.1 )
842
+ linear_model_left = linear_model
843
+ spline_model = linear_model
844
+ linear_model_right = linear_model
845
+ else :
846
+ spline = SplineTransformer (
847
+ degree = 4 , n_knots = int (len (measured_tr ) / 500 ) + 5
848
+ )
849
+ spline_model = make_pipeline (spline , LinearRegression ())
850
+ spline_model .fit (predicted_tr .reshape (- 1 , 1 ), measured_tr )
841
851
842
- # Fit a linear model on the bottom 10% (left-side extrapolation)
843
- X_left = predicted_tr [:n_top ]
844
- y_left = measured_tr [:n_top ]
845
- linear_model_left = LinearRegression ()
846
- linear_model_left .fit (X_left .reshape (- 1 , 1 ), y_left )
852
+ # Determine the top 10% of data on either end
853
+ n_top = int (len (predicted_tr ) * 0.1 )
847
854
848
- # Fit a linear model on the top 10% (right-side extrapolation)
849
- X_right = predicted_tr [- n_top :]
850
- y_right = measured_tr [- n_top :]
851
- linear_model_right = LinearRegression ()
852
- linear_model_right .fit (X_right .reshape (- 1 , 1 ), y_right )
855
+ # Fit a linear model on the bottom 10% (left-side extrapolation)
856
+ X_left = predicted_tr [:n_top ]
857
+ y_left = measured_tr [:n_top ]
858
+ linear_model_left = LinearRegression ()
859
+ linear_model_left .fit (X_left .reshape (- 1 , 1 ), y_left )
860
+
861
+ # Fit a linear model on the top 10% (right-side extrapolation)
862
+ X_right = predicted_tr [- n_top :]
863
+ y_right = measured_tr [- n_top :]
864
+ linear_model_right = LinearRegression ()
865
+ linear_model_right .fit (X_right .reshape (- 1 , 1 ), y_right )
853
866
854
867
calibrate_min = min (predicted_tr )
855
868
calibrate_max = max (predicted_tr )
869
+
856
870
return (
857
871
calibrate_min ,
858
872
calibrate_max ,
0 commit comments