You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages):
169
170
@@ -222,6 +223,8 @@ You can also post bug reports and feature requests in Github issues. Make sure t
222
223
223
224
[17] Blondel, M., Seguy, V., & Rolet, A. (2018). [Smooth and Sparse Optimal Transport](https://arxiv.org/abs/1710.06276). Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS).
224
225
225
-
[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) [Stochastic Optimization for Large-scale Optimal Transport](arXiv preprint arxiv:1605.08527). Advances in Neural Information Processing Systems (2016).
226
+
[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) [Stochastic Optimization for Large-scale Optimal Transport](https://arxiv.org/abs/1605.08527). Advances in Neural Information Processing Systems (2016).
226
227
227
228
[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. [Large-scale Optimal Transport and Mapping Estimation](https://arxiv.org/pdf/1711.02283.pdf). International Conference on Learning Representation (2018)
229
+
230
+
[20] Cuturi, M. and Doucet, A. (2014) [Fast Computation of Wasserstein Barycenters](http://proceedings.mlr.press/v32/cuturi14.html). International Conference in Machine Learning
"\n# 1D Wasserstein barycenter comparison between exact LP and entropic regularization\n\n\nThis example illustrates the computation of regularized Wasserstein Barycenter\nas proposed in [3] and exact LP barycenters using standard LP solver.\n\nIt reproduces approximately Figure 3.1 and 3.2 from the following paper:\nCuturi, M., & Peyr\u00e9, G. (2016). A smoothed dual approach for variational\nWasserstein problems. SIAM Journal on Imaging Sciences, 9(1), 320-343.\n\n[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyr\u00e9, G. (2015).\nIterative Bregman projections for regularized transportation problems\nSIAM Journal on Scientific Computing, 37(2), A1111-A1138.\n\n\n"
19
+
]
20
+
},
21
+
{
22
+
"cell_type": "code",
23
+
"execution_count": null,
24
+
"metadata": {
25
+
"collapsed": false
26
+
},
27
+
"outputs": [],
28
+
"source": [
29
+
"# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\n# necessary for 3d plot even if not used\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\nfrom matplotlib.collections import PolyCollection # noqa\n\n#import ot.lp.cvx as cvx"
30
+
]
31
+
},
32
+
{
33
+
"cell_type": "markdown",
34
+
"metadata": {},
35
+
"source": [
36
+
"Gaussian Data\n-------------\n\n"
37
+
]
38
+
},
39
+
{
40
+
"cell_type": "code",
41
+
"execution_count": null,
42
+
"metadata": {
43
+
"collapsed": false
44
+
},
45
+
"outputs": [],
46
+
"source": [
47
+
"#%% parameters\n\nproblems = []\n\nn = 100 # nb bins\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\n# Gaussian distributions\n# Gaussian distributions\na1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std\na2 = ot.datasets.make_1D_gauss(n, m=60, s=8)\n\n# creating matrix A containing all distributions\nA = np.vstack((a1, a2)).T\nn_distributions = A.shape[1]\n\n# loss matrix + normalization\nM = ot.utils.dist0(n)\nM /= M.max()\n\n\n#%% plot the distributions\n\npl.figure(1, figsize=(6.4, 3))\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\npl.tight_layout()\n\n#%% barycenter computation\n\nalpha = 0.5 # 0<=alpha<=1\nweights = np.array([1 - alpha, alpha])\n\n# l2bary\nbary_l2 = A.dot(weights)\n\n# wasserstein\nreg = 1e-3\not.tic()\nbary_wass = ot.bregman.barycenter(A, M, reg, weights)\not.toc()\n\n\not.tic()\nbary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)\not.toc()\n\npl.figure(2)\npl.clf()\npl.subplot(2, 1, 1)\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\n\npl.subplot(2, 1, 2)\npl.plot(x, bary_l2, 'r', label='l2')\npl.plot(x, bary_wass, 'g', label='Reg Wasserstein')\npl.plot(x, bary_wass2, 'b', label='LP Wasserstein')\npl.legend()\npl.title('Barycenters')\npl.tight_layout()\n\nproblems.append([A, [bary_l2, bary_wass, bary_wass2]])"
0 commit comments