You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* add transparent color logo
* add transparent color logo
* move screenkhorn
* move stochastic and install ffmpeg on circleci
* try something
* add sudo
* install ffmpeg before python
* cleanup examples
* test svg scrapper
* add animation for reg path
* better example OT sivergence
* update ttles and add plots
* update free support
* proper figure indexes
* have less frame sin animation
* update readme and release file
* add tests for python 3.10
Copy file name to clipboardExpand all lines: README.md
+6-4Lines changed: 6 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -29,8 +29,11 @@ POT provides the following generic OT solvers (links to examples):
29
29
* Non regularized [Wasserstein barycenters [16]](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html)) with LP solver (only small scale).
30
30
*[Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12]), differentiable using gradients from
31
31
*[Fused-Gromov-Wasserstein distances solver](https://pythonot.github.io/auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [FGW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_barycenter_fgw.html)[24]
32
-
*[Stochastic solver](https://pythonot.github.io/auto_examples/plot_stochastic.html) for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
33
-
*[Stochastic solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
32
+
*[Stochastic
33
+
solver](https://pythonot.github.io/auto_examples/others/plot_stochastic.html) and
34
+
[differentiable losses](https://pythonot.github.io/auto_examples/backends/plot_stoch_continuous_ot_pytorch.html) for
35
+
Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
36
+
*[Sampled solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
34
37
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html)[20].
35
38
*[Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25].
36
39
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
@@ -119,15 +122,14 @@ Note that for easier access the module is named `ot` instead of `pot`.
119
122
120
123
### Dependencies
121
124
122
-
Some sub-modules require additional dependences which are discussed below
125
+
Some sub-modules require additional dependencies which are discussed below
123
126
124
127
***ot.dr** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with:
125
128
126
129
```shell
127
130
pip install pymanopt autograd
128
131
```
129
132
130
-
***ot.gpu** (GPU accelerated OT) depends on cupy that have to be installed following instructions on [this page](https://docs-cupy.chainer.org/en/stable/install.html). Obviously you will need CUDA installed and a compatible GPU. Note that this module is deprecated since version 0.8 and will be deleted in the future. GPU is now handled automatically through the backends and several solver already can run on GPU using the Pytorch backend.
0 commit comments