You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[MRG] Implementation of two news algorithms: SaGroW and PoGroW. (#275)
* Add two new algorithms to solve Gromov Wasserstein: Sampled Gromov Wasserstein and Pointwise Gromov Wasserstein.
* Correct some lines in SaGroW and PoGroW to follow pep8 guide.
* Change nb_samples name. Use rdm state. Change symmetric check.
* Change names of len(p) and len(q) in SaGroW and PoGroW.
* Re-add some deleted lines in the comments of gromov.py
Co-authored-by: Rémi Flamary <remi.flamary@gmail.com>
Copy file name to clipboardExpand all lines: README.md
+4Lines changed: 4 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -28,6 +28,7 @@ POT provides the following generic OT solvers (links to examples):
28
28
*[Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12])
29
29
*[Fused-Gromov-Wasserstein distances solver](https://pythonot.github.io/auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [FGW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_barycenter_fgw.html)[24]
30
30
*[Stochastic solver](https://pythonot.github.io/auto_examples/plot_stochastic.html) for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
31
+
*[Stochastic solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
31
32
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html)[20].
32
33
*[Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25].
33
34
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
@@ -198,6 +199,7 @@ The contributors to this library are
198
199
*[Mokhtar Z. Alaya](http://mzalaya.github.io/) (Screenkhorn)
199
200
*[Ievgen Redko](https://ievred.github.io/) (Laplacian DA, JCPOT)
This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages):
@@ -286,3 +288,5 @@ You can also post bug reports and feature requests in Github issues. Make sure t
286
288
[31] Bonneel, Nicolas, et al. [Sliced and radon wasserstein barycenters of measures](https://perso.liris.cnrs.fr/nicolas.bonneel/WassersteinSliced-JMIV.pdf), Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45
287
289
288
290
[32] Huang, M., Ma S., Lai, L. (2021). [A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance](http://proceedings.mlr.press/v139/huang21e.html), Proceedings of the 38th International Conference on Machine Learning (ICML).
291
+
292
+
[33] Kerdoncuff T., Emonet R., Marc S. [Sampled Gromov Wasserstein](https://hal.archives-ouvertes.fr/hal-03232509/document), Machine Learning Journal (MJL), 2021
0 commit comments