Skip to content

NVIDIA/apex

Repository files navigation

Introduction

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intent of Apex is to make up-to-date utilities available to users as quickly as possible.

Installation

Each apex.contrib module requires one or more install options other than --cpp_ext and --cuda_ext. Note that contrib modules do not necessarily support stable PyTorch releases, some of them might only be compatible with nightlies.

Containers

NVIDIA PyTorch Containers are available on NGC: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch. The containers come with all the custom extensions available at the moment.

See the NGC documentation for details such as:

  • how to pull a container
  • how to run a pulled container
  • release notes

From Source

To install Apex from source, we recommend using the nightly Pytorch obtainable from https://github.com/pytorch/pytorch.

The latest stable release obtainable from https://pytorch.org should also work.

We recommend installing Ninja to make compilation faster.

Linux

For performance and full functionality, we recommend installing Apex with CUDA and C++ extensions using environment variables:

Using Environment Variables (Recommended)

git clone https://github.com/NVIDIA/apex
cd apex
# Build with core extensions (cpp and cuda)
APEX_CPP_EXT=1 APEX_CUDA_EXT=1 pip install -v --no-build-isolation .

# To build with additional extensions, specify them with environment variables
APEX_CPP_EXT=1 APEX_CUDA_EXT=1 APEX_FAST_MULTIHEAD_ATTN=1 APEX_FUSED_CONV_BIAS_RELU=1 pip install -v --no-build-isolation .

# To build all contrib extensions at once
APEX_CPP_EXT=1 APEX_CUDA_EXT=1 APEX_ALL_CONTRIB_EXT=1 pip install -v --no-build-isolation .

To reduce the build time, parallel building can be enabled:

NVCC_APPEND_FLAGS="--threads 4" APEX_PARALLEL_BUILD=8 APEX_CPP_EXT=1 APEX_CUDA_EXT=1 pip install -v --no-build-isolation .

When CPU cores or memory are limited, the --parallel option is generally preferred over --threads. See pull#1882 for more details.

Using Command-Line Flags (Legacy Method)

The traditional command-line flags are still supported:

# Using pip config-settings (pip >= 23.1)
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./

# For older pip versions
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# To build with additional extensions
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_multihead_attn" ./

Python-Only Build

APEX also supports a Python-only build via:

pip install -v --disable-pip-version-check --no-build-isolation --no-cache-dir ./

A Python-only build omits:

  • Fused kernels required to use apex.optimizers.FusedAdam.
  • Fused kernels required to use apex.normalization.FusedLayerNorm and apex.normalization.FusedRMSNorm.
  • Fused kernels that improve the performance and numerical stability of apex.parallel.SyncBatchNorm.
  • Fused kernels that improve the performance of apex.parallel.DistributedDataParallel and apex.amp. DistributedDataParallel, amp, and SyncBatchNorm will still be usable, but they may be slower.

[Experimental] Windows

pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . may work if you were able to build Pytorch from source on your system. A Python-only build via pip install -v --no-cache-dir . is more likely to work.
If you installed Pytorch in a Conda environment, make sure to install Apex in that same environment.

Custom C++/CUDA Extensions and Install Options

If a requirement of a module is not met, then it will not be built.

Module Name Environment Variable Install Option Misc
apex_C APEX_CPP_EXT=1 --cpp_ext
amp_C APEX_CUDA_EXT=1 --cuda_ext
syncbn APEX_CUDA_EXT=1 --cuda_ext
fused_layer_norm_cuda APEX_CUDA_EXT=1 --cuda_ext apex.normalization
mlp_cuda APEX_CUDA_EXT=1 --cuda_ext
scaled_upper_triang_masked_softmax_cuda APEX_CUDA_EXT=1 --cuda_ext
generic_scaled_masked_softmax_cuda APEX_CUDA_EXT=1 --cuda_ext
scaled_masked_softmax_cuda APEX_CUDA_EXT=1 --cuda_ext
fused_weight_gradient_mlp_cuda APEX_CUDA_EXT=1 --cuda_ext Requires CUDA>=11
permutation_search_cuda APEX_PERMUTATION_SEARCH=1 --permutation_search apex.contrib.sparsity
bnp APEX_BNP=1 --bnp apex.contrib.groupbn
xentropy APEX_XENTROPY=1 --xentropy apex.contrib.xentropy
focal_loss_cuda APEX_FOCAL_LOSS=1 --focal_loss apex.contrib.focal_loss
fused_index_mul_2d APEX_INDEX_MUL_2D=1 --index_mul_2d apex.contrib.index_mul_2d
fused_adam_cuda APEX_DEPRECATED_FUSED_ADAM=1 --deprecated_fused_adam apex.contrib.optimizers
fused_lamb_cuda APEX_DEPRECATED_FUSED_LAMB=1 --deprecated_fused_lamb apex.contrib.optimizers
fast_layer_norm APEX_FAST_LAYER_NORM=1 --fast_layer_norm apex.contrib.layer_norm. different from fused_layer_norm
fmhalib APEX_FMHA=1 --fmha apex.contrib.fmha
fast_multihead_attn APEX_FAST_MULTIHEAD_ATTN=1 --fast_multihead_attn apex.contrib.multihead_attn
transducer_joint_cuda APEX_TRANSDUCER=1 --transducer apex.contrib.transducer
transducer_loss_cuda APEX_TRANSDUCER=1 --transducer apex.contrib.transducer
cudnn_gbn_lib APEX_CUDNN_GBN=1 --cudnn_gbn Requires cuDNN>=8.5, apex.contrib.cudnn_gbn
peer_memory_cuda APEX_PEER_MEMORY=1 --peer_memory apex.contrib.peer_memory
nccl_p2p_cuda APEX_NCCL_P2P=1 --nccl_p2p Requires NCCL >= 2.10, apex.contrib.nccl_p2p
fast_bottleneck APEX_FAST_BOTTLENECK=1 --fast_bottleneck Requires peer_memory_cuda and nccl_p2p_cuda, apex.contrib.bottleneck
fused_conv_bias_relu APEX_FUSED_CONV_BIAS_RELU=1 --fused_conv_bias_relu Requires cuDNN>=8.4, apex.contrib.conv_bias_relu
distributed_adam_cuda APEX_DISTRIBUTED_ADAM=1 --distributed_adam apex.contrib.optimizers
distributed_lamb_cuda APEX_DISTRIBUTED_LAMB=1 --distributed_lamb apex.contrib.optimizers
_apex_nccl_allocator APEX_NCCL_ALLOCATOR=1 --nccl_allocator Requires NCCL >= 2.19, apex.contrib.nccl_allocator
_apex_gpu_direct_storage APEX_GPU_DIRECT_STORAGE=1 --gpu_direct_storage apex.contrib.gpu_direct_storage

You can also build all contrib extensions at once by setting APEX_ALL_CONTRIB_EXT=1.

About

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published