Skip to content

Commit 11de763

Browse files
committed
merge
2 parents c9a751d + 8f4360f commit 11de763

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

59 files changed

+2624
-600
lines changed

.circleci/test.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -162,8 +162,8 @@ workflows:
162162
- lint
163163
- build_cpu:
164164
name: maximum_version_cpu
165-
torch: 1.12.1
166-
torchvision: 0.13.1
165+
torch: 1.13.0
166+
torchvision: 0.14.0
167167
python: 3.9.0
168168
requires:
169169
- minimum_version_cpu

.dev_scripts/test_init_backbone.py

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from mmengine.runner import CheckpointLoader
1010
from mmengine.utils import ProgressBar
1111

12-
from mmdet.models import build_detector
12+
from mmdet.registry import MODELS
1313

1414

1515
def _get_config_directory():
@@ -93,7 +93,7 @@ def _check_backbone(config, print_cfg=True):
9393
9494
First, using `CheckpointLoader.load_checkpoint` to load the checkpoint
9595
without loading models.
96-
Then, using `build_detector` to build models, and using
96+
Then, using `MODELS.build` to build models, and using
9797
`model.init_weights()` to initialize the parameters.
9898
Finally, assert weights and bias of each layer loaded from pretrained
9999
checkpoint are equal to the weights and bias of original checkpoint.
@@ -126,10 +126,7 @@ def _check_backbone(config, print_cfg=True):
126126
else:
127127
state_dict = checkpoint
128128

129-
model = build_detector(
130-
cfg.model,
131-
train_cfg=cfg.get('train_cfg'),
132-
test_cfg=cfg.get('test_cfg'))
129+
model = MODELS.build(cfg.model)
133130
model.init_weights()
134131

135132
checkpoint_layers = state_dict.keys()

README.md

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -68,13 +68,32 @@ The master branch works with **PyTorch 1.6+**.
6868
- **State of the art**
6969

7070
The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
71+
The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
7172

7273
</details>
7374

7475
Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox.
7576

7677
## What's New
7778

79+
### Highlight
80+
81+
We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).
82+
83+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
84+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
85+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)
86+
87+
| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
88+
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
89+
| Object Detection | COCO | 52.8 | 322 |
90+
| Instance Segmentation | COCO | 44.6 | 188 |
91+
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
92+
93+
<div align=center>
94+
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
95+
</div>
96+
7897
**v3.0.0rc4** was released in 25/11/2022:
7998

8099
- Support [CondInst](https://arxiv.org/abs/2003.05664)
@@ -187,6 +206,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
187206
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
188207
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
189208
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
209+
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
190210
</ul>
191211
</td>
192212
<td>
@@ -206,6 +226,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
206226
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
207227
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
208228
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
229+
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
209230
</ul>
210231
</td>
211232
<td>

README_zh-CN.md

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -67,13 +67,32 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
6767
- **性能高**
6868

6969
MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 *MMDet* 团队开发的代码,我们在之后持续进行了改进和提升。
70+
新发布的 [RTMDet](configs/rtmdet) 还在实时实例分割和旋转目标检测任务中取得了最先进的成果,同时也在目标检测模型中取得了最佳的的参数量和精度平衡。
7071

7172
</details>
7273

7374
除了 MMDetection 之外,我们还开源了深度学习训练库 [MMEngine](https://github.com/open-mmlab/mmengine) 和计算机视觉基础库 [MMCV](https://github.com/open-mmlab/mmcv),它们是 MMDetection 的主要依赖。
7475

7576
## 最新进展
7677

78+
### 亮点
79+
80+
我们很高兴向大家介绍我们在实时目标识别任务方面的最新成果 RTMDet,包含了一系列的全卷积单阶段检测模型。 RTMDet 不仅在从 tiny 到 extra-large 尺寸的目标检测模型上上实现了最佳的参数量和精度的平衡,而且在实时实例分割和旋转目标检测任务上取得了最先进的成果。 更多细节请参阅[技术报告](https://arxiv.org/abs/2212.07784)。 预训练模型可以在[这里](configs/rtmdet)找到。
81+
82+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
83+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
84+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)
85+
86+
| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
87+
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
88+
| Object Detection | COCO | 52.8 | 322 |
89+
| Instance Segmentation | COCO | 44.6 | 188 |
90+
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
91+
92+
<div align=center>
93+
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
94+
</div>
95+
7796
**v3.0.0rc4** 版本已经在 2022.11.25 发布:
7897

7998
- 支持了 [CondInst](https://arxiv.org/abs/2003.05664)
@@ -188,6 +207,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
188207
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
189208
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
190209
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
210+
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
191211
</ul>
192212
</td>
193213
<td>
@@ -207,6 +227,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
207227
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
208228
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
209229
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
230+
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
210231
</ul>
211232
</td>
212233
<td>

0 commit comments

Comments
 (0)