diff --git a/docs/yolo/yolo.rst b/docs/yolo/yolo.rst index 55def3f..5ca2381 100644 --- a/docs/yolo/yolo.rst +++ b/docs/yolo/yolo.rst @@ -38,7 +38,7 @@ You can print them to the console with:: ln = net.getLayerNames() print(len(ln), ln) -The 524 elements consist of convolutional layers (``conv``), +The 254 elements consist of convolutional layers (``conv``), rectifier linear units (``relu``) etc.:: 254 ['conv_0', 'bn_0', 'relu_0', 'conv_1', 'bn_1', 'relu_1', 'conv_2', 'bn_2', @@ -62,7 +62,7 @@ It has the following parameters: * the **scale** factor (1/255 to scale the pixel values to [0..1]) * the **size**, here a 416x416 square image * the **mean** value (default=0) -* the option **swapBR=True** (since OpenCV uses BGR) +* the option **swapRB=True** (since OpenCV uses BGR) A blob is a 4D numpy array object (images, channels, width, height). The image below shows the red channel of the blob. @@ -148,4 +148,4 @@ Sources Tutorials: * https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/ -* https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ \ No newline at end of file +* https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/