This document provides detailed setup instructions for running the comorbidity network analysis system on both cloud and local environments.
Component | Minimum Requirements |
---|---|
CPU | Intel Xeon CPU @ 2.20GHz (x86_64) |
Cores | 2 Cores (Hyperthreaded) |
Memory | 12 GB RAM |
Storage | At least 100 GB disk space |
GPU | No GPU detected (CPU-based processing) |
Component | Version |
---|---|
Operating System | Ubuntu-based (KVM Virtualized) |
Python Version | 3.11.11 |
Key Dependencies | Listed in requirements.txt |
Ensure you have Python 3.11+ installed. If not, install it via:
sudo apt update && sudo apt install python3.11 python3.11-venv python3.11-dev -y
Next, create and activate a virtual environment:
python3.11 -m venv env
source env/bin/activate
Install dependencies from requirements.txt:
python --version
pip list
Check if Python and required libraries are correctly installed:
python --version
pip list
Expected output:
Python 3.11.11
Ensure at least 100GB of free space for data processing:
df -h
If needed, extend disk space before running large-scale computations.
Execute the comorbidity network analysis with:
python main.py --input data/prevalence_data.csv --output results/
Results will be stored in the results/ folder.
This section provides a step-by-step guide for deploying the comorbidity network analysis system on cloud platforms like AWS EC2, Google Cloud Compute Engine (GCP), and Microsoft Azure Virtual Machines.
Select a compute-optimized virtual machine (VM) for optimal performance:
- AWS EC2:
c5.large
(2 vCPUs, 12 GB RAM) - Google Cloud Compute Engine:
n2-standard-2
- Azure Virtual Machine:
Standard_D2s_v3
Create and launch the instance using the Ubuntu LTS image.
After connecting to the instance via SSH, update system packages:
sudo apt update && sudo apt upgrade -y
Install Python and required system dependencies:
sudo apt install python3.11 python3.11-venv python3.11-dev -y
Clone the GitHub repository and navigate to the project directory:
git clone https://github.com/YOUR_REPO_NAME.git
cd YOUR_REPO_NAME
Create a virtual environment and install dependencies:
python3.11 -m venv env
source env/bin/activate
pip install -r requirements.txt
Verify Python and package installations:
python --version
pip list
Since cloud instances may have limited storage, consider using cloud storage solutions:
aws s3 cp s3://your-bucket/prevalence_data.csv data/
gsutil cp gs://your-bucket/prevalence_data.csv data/
Run the main script with cloud-based data:
python main.py --input data/prevalence_data.csv --output results/
Monitor processing logs:
tail -f logs/output.log
After execution, download results locally:
scp -r user@your-cloud-instance-ip:/path/to/results ./local_results/