Skip to content

Rising-Stars-by-Sunshine/Yijia_Sun_PS1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 

Repository files navigation

Yijia_Sun_PS2: System Configuration and Setup Guide

This document provides detailed setup instructions for running the comorbidity network analysis system on both cloud and local environments.


1. System Requirements

1.1 Hardware Specifications

Component Minimum Requirements
CPU Intel Xeon CPU @ 2.20GHz (x86_64)
Cores 2 Cores (Hyperthreaded)
Memory 12 GB RAM
Storage At least 100 GB disk space
GPU No GPU detected (CPU-based processing)

1.2 Software Specifications

Component Version
Operating System Ubuntu-based (KVM Virtualized)
Python Version 3.11.11
Key Dependencies Listed in requirements.txt

2. Local Setup

2.1 Install Required Packages

Ensure you have Python 3.11+ installed. If not, install it via:

sudo apt update && sudo apt install python3.11 python3.11-venv python3.11-dev -y

Next, create and activate a virtual environment:

python3.11 -m venv env
source env/bin/activate

Install dependencies from requirements.txt:

python --version
pip list

2.2 Verify Python and Package Installation

Check if Python and required libraries are correctly installed:

python --version
pip list

Expected output:

Python 3.11.11

2.3 Configure Data Storage

Ensure at least 100GB of free space for data processing:

df -h

If needed, extend disk space before running large-scale computations.

2.4 Running the System

Execute the comorbidity network analysis with:

python main.py --input data/prevalence_data.csv --output results/

Results will be stored in the results/ folder.

3. Cloud Deployment (AWS, GCP, or Azure)

This section provides a step-by-step guide for deploying the comorbidity network analysis system on cloud platforms like AWS EC2, Google Cloud Compute Engine (GCP), and Microsoft Azure Virtual Machines.


3.1 Setting Up a Cloud Instance

Select a compute-optimized virtual machine (VM) for optimal performance:

  • AWS EC2: c5.large (2 vCPUs, 12 GB RAM)
  • Google Cloud Compute Engine: n2-standard-2
  • Azure Virtual Machine: Standard_D2s_v3

Create and launch the instance using the Ubuntu LTS image.


3.2 Install Required Dependencies

After connecting to the instance via SSH, update system packages:

sudo apt update && sudo apt upgrade -y

Install Python and required system dependencies:

sudo apt install python3.11 python3.11-venv python3.11-dev -y

Clone the GitHub repository and navigate to the project directory:

git clone https://github.com/YOUR_REPO_NAME.git
cd YOUR_REPO_NAME

Create a virtual environment and install dependencies:

python3.11 -m venv env
source env/bin/activate
pip install -r requirements.txt

Verify Python and package installations:

python --version
pip list

3.3 Managing Large Datasets

Since cloud instances may have limited storage, consider using cloud storage solutions:

AWS S3

aws s3 cp s3://your-bucket/prevalence_data.csv data/

Google Cloud Storage (GCP)

gsutil cp gs://your-bucket/prevalence_data.csv data/

3.4 Running the Analysis in Cloud

Run the main script with cloud-based data:

python main.py --input data/prevalence_data.csv --output results/

Monitor processing logs:

tail -f logs/output.log

After execution, download results locally:

scp -r user@your-cloud-instance-ip:/path/to/results ./local_results/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published