A modular and easy-to-use machine learning model evaluation tool with both Streamlit UI and command-line interface (CLI) support. The goal is to allow fast and flexible experimentation on tabular datasets for classification tasks — especially to understand how feature selection (including PCA) impacts model performance.
-
Upload any tabular CSV dataset
-
Select target column and drop irrelevant columns
-
Automatically apply PCA if high dimensionality is detected
-
Perform feature selection:
- Elbow method (auto)
- Manual top-N features
-
Evaluate using Logistic Regression
-
Get precision, recall, F1-score, and support metrics
-
Works both via:
- 📊 Streamlit UI
- 🔧 Command-line script
-
Clone this repo
git clone https://github.com/RohitXJ/ML-Model-Evaluation-Dashboard-Scripted.git cd ML-Model-Evaluation-Dashboard-Scripted
-
Create a virtual environment (recommended)
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install required packages
pip install -r requirements.txt
-
Run the Streamlit app
cd streamlit_app_version streamlit run streamlit_app.py
- Upload your CSV file.
- Choose the target column to predict.
- Optionally drop any irrelevant columns.
- Select feature selection method.
- Click Proceed to get model evaluation results!
You can also run the same logic directly in the terminal:
-
Clone this repo
git clone https://github.com/RohitXJ/ML-Model-Evaluation-Dashboard-Scripted.git cd ML-Model-Evaluation-Dashboard-Scripted
-
Create a virtual environment (recommended)
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install required packages
pip install -r requirements.txt
-
Run the script
python main.py
Install with:
pip install -r requirements.txt
Key libraries used:
pandas
numpy
scikit-learn
matplotlib
seaborn
streamlit
Rohit Gomes B.Tech CSE (AI & ML) | Brainware University LinkedIn: @rohit-gomes Email: gomesrohit92@gmail.com GitHub: @RohitXJ
Pull requests are welcome. For major changes, please open an issue first to discuss your ideas.
MIT License