Skip to content

基于ResNet改进U-Net,融合注意力机制和ASPP模块,实现多类别语义分割。Improve U-Net based on ResNet, integrate attention mechanism and ASPP module, and realize multi-category semantic segmentation.

License

Notifications You must be signed in to change notification settings

LinsamYoung/Semantic_Segmentation

Repository files navigation

Semantic Segmentation 基于改进的ResNet-U-Net

大学牲的CV课程实验🥲,基于ResNet改进U-Net,深度监督、融合注意力机制和ASPP模块,实现多类别语义分割。

As a student,it's my CV course experiment 🥲, based on ResNet to improve U-Net, in-depth supervision, integration of attention mechanism and ASPP module, to achieve multi-category semantic segmentation.

特点 feature

  • 基于ResNet的编码器,增强特征提取能力

ResNet-based encoder enhances feature extraction ability

  • 引入注意力机制,聚焦重要特征区域

Introduce attention mechanisms and focus on important feature areas

  • 集成ASPP模块,提升多尺度目标处理能力

Integrate ASPP modules to improve multi-scale target processing ability

  • 深度监督,学习多层次特征

In-depth supervision, learning multi-level characteristics

  • 图像增强 Image enhancement

文件结构 Files

├── ResNet_Semantic_Segmentation.ipynb   # 主代码文件,包含模型构建与训练流程
├── voc-pascal-2012-segmentation         # 数据集文件夹
│     ├── JPEGImages                     # 数据集图片文件夹
      ├── mask                           # mask图片文件夹
      ├── train.txt                      # 训练集索引
      ├── valid.txt                      # 验证集索引
├── README.md                            # 项目说明文档
└── best.pth                             # 模型                           

大致网络结构 Rough network structure

成果demo

训练50次 '训练50次'loss和dice sorce'

训练100次 '训练100次loss和dice sorce'

demo

环境依赖 Environment

  • Python 3.x
  • Jupyter Notebook
  • PyTorch >= 1.7
  • torchvision
  • numpy
  • matplotlib
  • ...

About

基于ResNet改进U-Net,融合注意力机制和ASPP模块,实现多类别语义分割。Improve U-Net based on ResNet, integrate attention mechanism and ASPP module, and realize multi-category semantic segmentation.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published