Skip to content

PramodK1953/rainfall-prediction-pramod

Repository files navigation

Rainfall Prediction ML Web App

  • Create Dataset

  • Using Data from https://power.larc.nasa.gov/data-access-viewer/ download the precipitation datas of major cities into cvv file which will be the dataset

  • Add city names and encode them using sklearn.preprocessing OneHotEncoder()

  • Standardise the data using sklearn

  • Training ANN model

  • Model

  • Train the model using the data

  • Check for best parameters using randomise cv

  • Save the final model

  • Checking Model Prediction

  • Check model summary, parameters, loss and accuracy

  • Params

  • Test it manually on a single row

  • Integrating into App

  • Using streamlit make a web app and create input boxes for user input

  • After taking all inputs from user, combine the input data into a Dataframe and load the model

  • Feed the input Dataframe to the model and get predictions for rainfall in form of probalities

  • Process these probalities to out show an output Pediction on the App

App Display

Display

Prediction

Prediction

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages