-
Notifications
You must be signed in to change notification settings - Fork 528
[MRG] Wasserstein distance on the circle and Spherical Sliced-Wasserstein #434
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
16 commits
Select commit
Hold shift + click to select a range
f309f80
W circle + SSW
clbonet 88510d1
Tests + Example SSW_1
clbonet 0f87a57
Example Wasserstein Circle + Tests
clbonet ea73a5d
Wasserstein on the circle wrt Unif
clbonet 8d5b355
Example SSW unif
clbonet 5353836
pep8
clbonet c5f12da
np.linalg.qr for numpy < 1.22 by batch + add python3.11 to tests
clbonet 85598eb
np qr
clbonet fec0511
rm test python 3.11
clbonet 66fccf0
update names, tests, backend transpose
clbonet 1234c96
Comment error batchs
clbonet ad76765
semidiscrete_wasserstein2_unif_circle example
clbonet 2412dbe
torch permute method instead of torch.permute for previous versions
clbonet 0963c66
update comments and doc
clbonet bb26cf7
doc wasserstein circle model as [0,1[
clbonet 5a3f367
Added ot.utils.get_coordinate_circle to get coordinates on the circle…
clbonet File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# -*- coding: utf-8 -*- | ||
r""" | ||
================================================ | ||
Spherical Sliced-Wasserstein Embedding on Sphere | ||
================================================ | ||
|
||
Here, we aim at transforming samples into a uniform | ||
distribution on the sphere by minimizing SSW: | ||
|
||
.. math:: | ||
\min_{x} SSW_2(\nu, \frac{1}{n}\sum_{i=1}^n \delta_{x_i}) | ||
|
||
where :math:`\nu=\mathrm{Unif}(S^1)`. | ||
|
||
""" | ||
|
||
# Author: Clément Bonet <clement.bonet@univ-ubs.fr> | ||
# | ||
# License: MIT License | ||
|
||
# sphinx_gallery_thumbnail_number = 3 | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as pl | ||
import matplotlib.animation as animation | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
import ot | ||
|
||
|
||
# %% | ||
# Data generation | ||
# --------------- | ||
|
||
torch.manual_seed(1) | ||
|
||
N = 1000 | ||
x0 = torch.rand(N, 3) | ||
x0 = F.normalize(x0, dim=-1) | ||
|
||
|
||
# %% | ||
# Plot data | ||
# --------- | ||
|
||
def plot_sphere(ax): | ||
xlist = np.linspace(-1.0, 1.0, 50) | ||
ylist = np.linspace(-1.0, 1.0, 50) | ||
r = np.linspace(1.0, 1.0, 50) | ||
X, Y = np.meshgrid(xlist, ylist) | ||
|
||
Z = np.sqrt(r**2 - X**2 - Y**2) | ||
|
||
ax.plot_wireframe(X, Y, Z, color="gray", alpha=.3) | ||
ax.plot_wireframe(X, Y, -Z, color="gray", alpha=.3) # Now plot the bottom half | ||
|
||
|
||
# plot the distributions | ||
pl.figure(1) | ||
ax = pl.axes(projection='3d') | ||
plot_sphere(ax) | ||
ax.scatter(x0[:, 0], x0[:, 1], x0[:, 2], label='Data samples', alpha=0.5) | ||
ax.set_title('Data distribution') | ||
ax.legend() | ||
|
||
|
||
# %% | ||
# Gradient descent | ||
# ---------------- | ||
|
||
x = x0.clone() | ||
x.requires_grad_(True) | ||
|
||
n_iter = 500 | ||
lr = 100 | ||
|
||
losses = [] | ||
xvisu = torch.zeros(n_iter, N, 3) | ||
|
||
for i in range(n_iter): | ||
sw = ot.sliced_wasserstein_sphere_unif(x, n_projections=500) | ||
grad_x = torch.autograd.grad(sw, x)[0] | ||
|
||
x = x - lr * grad_x | ||
x = F.normalize(x, p=2, dim=1) | ||
|
||
losses.append(sw.item()) | ||
xvisu[i, :, :] = x.detach().clone() | ||
|
||
if i % 100 == 0: | ||
print("Iter: {:3d}, loss={}".format(i, losses[-1])) | ||
|
||
pl.figure(1) | ||
pl.semilogy(losses) | ||
pl.grid() | ||
pl.title('SSW') | ||
pl.xlabel("Iterations") | ||
|
||
|
||
# %% | ||
# Plot trajectories of generated samples along iterations | ||
# ------------------------------------------------------- | ||
|
||
ivisu = [0, 25, 50, 75, 100, 150, 200, 350, 499] | ||
|
||
fig = pl.figure(3, (10, 10)) | ||
for i in range(9): | ||
# pl.subplot(3, 3, i + 1) | ||
# ax = pl.axes(projection='3d') | ||
ax = fig.add_subplot(3, 3, i + 1, projection='3d') | ||
plot_sphere(ax) | ||
ax.scatter(xvisu[ivisu[i], :, 0], xvisu[ivisu[i], :, 1], xvisu[ivisu[i], :, 2], label='Data samples', alpha=0.5) | ||
ax.set_title('Iter. {}'.format(ivisu[i])) | ||
#ax.axis("off") | ||
if i == 0: | ||
ax.legend() | ||
|
||
|
||
# %% | ||
# Animate trajectories of generated samples along iteration | ||
# ------------------------------------------------------- | ||
|
||
pl.figure(4, (8, 8)) | ||
|
||
|
||
def _update_plot(i): | ||
i = 3 * i | ||
pl.clf() | ||
ax = pl.axes(projection='3d') | ||
plot_sphere(ax) | ||
ax.scatter(xvisu[i, :, 0], xvisu[i, :, 1], xvisu[i, :, 2], label='Data samples$', alpha=0.5) | ||
ax.axis("off") | ||
ax.set_xlim((-1.5, 1.5)) | ||
ax.set_ylim((-1.5, 1.5)) | ||
ax.set_title('Iter. {}'.format(i)) | ||
return 1 | ||
|
||
|
||
print(xvisu.shape) | ||
|
||
i = 0 | ||
ax = pl.axes(projection='3d') | ||
plot_sphere(ax) | ||
ax.scatter(xvisu[i, :, 0], xvisu[i, :, 1], xvisu[i, :, 2], label='Data samples from $G\#\mu_n$', alpha=0.5) | ||
ax.axis("off") | ||
ax.set_xlim((-1.5, 1.5)) | ||
ax.set_ylim((-1.5, 1.5)) | ||
ax.set_title('Iter. {}'.format(ivisu[i])) | ||
|
||
|
||
ani = animation.FuncAnimation(pl.gcf(), _update_plot, n_iter // 5, interval=100, repeat_delay=2000) | ||
# %% |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
========================= | ||
OT distance on the Circle | ||
========================= | ||
|
||
Shows how to compute the Wasserstein distance on the circle | ||
|
||
|
||
""" | ||
|
||
# Author: Clément Bonet <clement.bonet@univ-ubs.fr> | ||
# | ||
# License: MIT License | ||
|
||
# sphinx_gallery_thumbnail_number = 2 | ||
|
||
import numpy as np | ||
import matplotlib.pylab as pl | ||
import ot | ||
|
||
from scipy.special import iv | ||
|
||
############################################################################## | ||
# Plot data | ||
# --------- | ||
|
||
#%% plot the distributions | ||
|
||
|
||
def pdf_von_Mises(theta, mu, kappa): | ||
pdf = np.exp(kappa * np.cos(theta - mu)) / (2.0 * np.pi * iv(0, kappa)) | ||
return pdf | ||
|
||
|
||
t = np.linspace(0, 2 * np.pi, 1000, endpoint=False) | ||
|
||
mu1 = 1 | ||
kappa1 = 20 | ||
|
||
mu_targets = np.linspace(mu1, mu1 + 2 * np.pi, 10) | ||
|
||
|
||
pdf1 = pdf_von_Mises(t, mu1, kappa1) | ||
|
||
|
||
pl.figure(1) | ||
for k, mu in enumerate(mu_targets): | ||
pdf_t = pdf_von_Mises(t, mu, kappa1) | ||
if k == 0: | ||
label = "Source distributions" | ||
else: | ||
label = None | ||
pl.plot(t / (2 * np.pi), pdf_t, c='b', label=label) | ||
|
||
pl.plot(t / (2 * np.pi), pdf1, c="r", label="Target distribution") | ||
pl.legend() | ||
|
||
mu2 = 0 | ||
kappa2 = kappa1 | ||
|
||
x1 = np.random.vonmises(mu1, kappa1, size=(10,)) + np.pi | ||
x2 = np.random.vonmises(mu2, kappa2, size=(10,)) + np.pi | ||
|
||
angles = np.linspace(0, 2 * np.pi, 150) | ||
|
||
pl.figure(2) | ||
pl.plot(np.cos(angles), np.sin(angles), c="k") | ||
pl.xlim(-1.25, 1.25) | ||
pl.ylim(-1.25, 1.25) | ||
pl.scatter(np.cos(x1), np.sin(x1), c="b") | ||
pl.scatter(np.cos(x2), np.sin(x2), c="r") | ||
|
||
######################################################################################### | ||
# Compare the Euclidean Wasserstein distance with the Wasserstein distance on the circle | ||
# --------------------------------------------------------------------------------------- | ||
# This examples illustrates the periodicity of the Wasserstein distance on the circle. | ||
# We choose as target distribution a von Mises distribution with mean :math:`\mu_{\mathrm{target}}` | ||
# and :math:`\kappa=20`. Then, we compare the distances with samples obtained from a von Mises distribution | ||
# with parameters :math:`\mu_{\mathrm{source}}` and :math:`\kappa=20`. | ||
# The Wasserstein distance on the circle takes into account the periodicity | ||
# and attains its maximum in :math:`\mu_{\mathrm{target}}+1` (the antipodal point) contrary to the | ||
# Euclidean version. | ||
|
||
#%% Compute and plot distributions | ||
|
||
mu_targets = np.linspace(0, 2 * np.pi, 200) | ||
xs = np.random.vonmises(mu1 - np.pi, kappa1, size=(500,)) + np.pi | ||
|
||
n_try = 5 | ||
|
||
xts = np.zeros((n_try, 200, 500)) | ||
for i in range(n_try): | ||
for k, mu in enumerate(mu_targets): | ||
# np.random.vonmises deals with data on [-pi, pi[ | ||
xt = np.random.vonmises(mu - np.pi, kappa2, size=(500,)) + np.pi | ||
xts[i, k] = xt | ||
|
||
# Put data on S^1=[0,1[ | ||
xts2 = xts / (2 * np.pi) | ||
xs2 = np.concatenate([xs[None] for k in range(200)], axis=0) / (2 * np.pi) | ||
|
||
L_w2_circle = np.zeros((n_try, 200)) | ||
L_w2 = np.zeros((n_try, 200)) | ||
|
||
for i in range(n_try): | ||
w2_circle = ot.wasserstein_circle(xs2.T, xts2[i].T, p=2) | ||
w2 = ot.wasserstein_1d(xs2.T, xts2[i].T, p=2) | ||
|
||
L_w2_circle[i] = w2_circle | ||
L_w2[i] = w2 | ||
|
||
m_w2_circle = np.mean(L_w2_circle, axis=0) | ||
std_w2_circle = np.std(L_w2_circle, axis=0) | ||
|
||
m_w2 = np.mean(L_w2, axis=0) | ||
std_w2 = np.std(L_w2, axis=0) | ||
|
||
pl.figure(1) | ||
pl.plot(mu_targets / (2 * np.pi), m_w2_circle, label="Wasserstein circle") | ||
pl.fill_between(mu_targets / (2 * np.pi), m_w2_circle - 2 * std_w2_circle, m_w2_circle + 2 * std_w2_circle, alpha=0.5) | ||
pl.plot(mu_targets / (2 * np.pi), m_w2, label="Euclidean Wasserstein") | ||
pl.fill_between(mu_targets / (2 * np.pi), m_w2 - 2 * std_w2, m_w2 + 2 * std_w2, alpha=0.5) | ||
pl.vlines(x=[mu1 / (2 * np.pi)], ymin=0, ymax=np.max(w2), linestyle="--", color="k", label=r"$\mu_{\mathrm{target}}$") | ||
pl.legend() | ||
pl.xlabel(r"$\mu_{\mathrm{source}}$") | ||
pl.show() | ||
|
||
|
||
######################################################################## | ||
# Wasserstein distance between von Mises and uniform for different kappa | ||
# ---------------------------------------------------------------------- | ||
# When :math:`\kappa=0`, the von Mises distribution is the uniform distribution on :math:`S^1`. | ||
|
||
#%% Compute Wasserstein between Von Mises and uniform | ||
|
||
kappas = np.logspace(-5, 2, 100) | ||
n_try = 20 | ||
|
||
xts = np.zeros((n_try, 100, 500)) | ||
for i in range(n_try): | ||
for k, kappa in enumerate(kappas): | ||
# np.random.vonmises deals with data on [-pi, pi[ | ||
xt = np.random.vonmises(0, kappa, size=(500,)) + np.pi | ||
xts[i, k] = xt / (2 * np.pi) | ||
|
||
L_w2 = np.zeros((n_try, 100)) | ||
for i in range(n_try): | ||
L_w2[i] = ot.semidiscrete_wasserstein2_unif_circle(xts[i].T) | ||
|
||
m_w2 = np.mean(L_w2, axis=0) | ||
std_w2 = np.std(L_w2, axis=0) | ||
|
||
pl.figure(1) | ||
pl.plot(kappas, m_w2) | ||
pl.fill_between(kappas, m_w2 - std_w2, m_w2 + std_w2, alpha=0.5) | ||
pl.title(r"Evolution of $W_2^2(vM(0,\kappa), Unif(S^1))$") | ||
pl.xlabel(r"$\kappa$") | ||
pl.show() | ||
|
||
# %% |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.