Skip to content

ThirdKeyAI/symbiont-sdk-python

Repository files navigation

Symbiont Python SDK

A Python SDK for interacting with the Symbiont Agent Runtime System, providing a streamlined interface for building AI-powered applications with agent capabilities, tool review workflows, and security analysis.

Overview

The Symbiont Python SDK enables developers to integrate with the Symbiont platform, which provides intelligent agent runtime capabilities and comprehensive tool review workflows. This SDK handles authentication, HTTP requests, error handling, and provides typed models for working with Symbiont agents, tool reviews, and related resources.

Installation

Install from PyPI

pip install symbiont-sdk

Install from Repository (Development)

For development or to get the latest features:

git clone https://github.com/thirdkeyai/symbiont-sdk-python.git
cd symbiont-sdk-python
pip install -e .

Docker

The SDK is also available as a Docker image from GitHub Container Registry:

# Pull the latest image
docker pull ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Or pull a specific version
docker pull ghcr.io/thirdkeyai/symbiont-sdk-python:v0.2.0

Running with Docker

# Run interactively with Python REPL
docker run -it --rm ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Run with environment variables
docker run -it --rm \
  -e SYMBIONT_API_KEY=your_api_key \
  -e SYMBIONT_BASE_URL=http://host.docker.internal:8080/api/v1 \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Run a Python script from host
docker run --rm \
  -v $(pwd):/workspace \
  -w /workspace \
  -e SYMBIONT_API_KEY=your_api_key \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest \
  python your_script.py

# Execute one-liner
docker run --rm \
  -e SYMBIONT_API_KEY=your_api_key \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest \
  python -c "from symbiont import Client; print(Client().health_check())"

Building Docker Image Locally

# Build from source
git clone https://github.com/thirdkeyai/symbiont-sdk-python.git
cd symbiont-sdk-python
docker build -t symbiont-sdk:local .

# Run locally built image
docker run -it --rm symbiont-sdk:local

Configuration

The SDK can be configured using environment variables in a .env file. Copy the provided .env.example file to get started:

cp .env.example .env

Supported Environment Variables

Variable Description Default
SYMBIONT_API_KEY API key for authentication None
SYMBIONT_BASE_URL Base URL for the Symbiont API http://localhost:8080/api/v1
SYMBIONT_TIMEOUT Request timeout in seconds 30
SYMBIONT_MAX_RETRIES Maximum retries for API calls 3

Example .env Configuration

# API Configuration
SYMBIONT_API_KEY=your_api_key_here
SYMBIONT_BASE_URL=http://localhost:8080/api/v1

# Optional Settings
SYMBIONT_TIMEOUT=30
SYMBIONT_MAX_RETRIES=3

Quick Start

Basic Client Initialization

from symbiont import Client

# Initialize with environment variables
client = Client()

# Or initialize with explicit parameters
client = Client(
    api_key="your_api_key",
    base_url="http://localhost:8080/api/v1"
)

System Health Check

from symbiont import Client

client = Client()

# Check system health
health = client.health_check()
print(f"Status: {health.status}")
print(f"Uptime: {health.uptime_seconds} seconds")
print(f"Version: {health.version}")

API Reference

Agent Management

List Agents

# Get list of all agents
agents = client.list_agents()
print(f"Found {len(agents)} agents: {agents}")

Get Agent Status

from symbiont import AgentState

# Get specific agent status
status = client.get_agent_status("agent-123")
print(f"Agent {status.agent_id} is {status.state}")
print(f"Memory usage: {status.resource_usage.memory_bytes} bytes")
print(f"CPU usage: {status.resource_usage.cpu_percent}%")

Create Agent

from symbiont import Agent

# Create a new agent
agent_data = Agent(
    id="my-agent",
    name="My Assistant",
    description="A helpful AI assistant",
    system_prompt="You are a helpful assistant.",
    tools=["web_search", "calculator"],
    model="gpt-4",
    temperature=0.7,
    top_p=0.9,
    max_tokens=1000
)

result = client.create_agent(agent_data)
print(f"Created agent: {result}")

Workflow Execution

from symbiont import WorkflowExecutionRequest

# Execute a workflow
workflow_request = WorkflowExecutionRequest(
    workflow_id="data-analysis-workflow",
    parameters={
        "input_data": "path/to/data.csv",
        "analysis_type": "statistical"
    },
    agent_id="agent-123"  # Optional
)

result = client.execute_workflow(workflow_request)
print(f"Workflow result: {result}")

Tool Review API

The Tool Review API provides comprehensive workflows for securely reviewing, analyzing, and signing MCP tools.

Submit Tool for Review

from symbiont import (
    ReviewSessionCreate, Tool, ToolProvider, ToolSchema
)

# Define a tool for review
tool = Tool(
    name="example-calculator",
    description="A simple calculator tool",
    schema=ToolSchema(
        type="object",
        properties={
            "operation": {
                "type": "string",
                "enum": ["add", "subtract", "multiply", "divide"]
            },
            "a": {"type": "number"},
            "b": {"type": "number"}
        },
        required=["operation", "a", "b"]
    ),
    provider=ToolProvider(
        name="example-provider",
        public_key_url="https://example.com/pubkey.pem"
    )
)

# Submit for review
review_request = ReviewSessionCreate(
    tool=tool,
    submitted_by="developer@example.com",
    priority="normal"
)

session = client.submit_tool_for_review(review_request)
print(f"Review session {session.review_id} created with status: {session.status}")

Monitor Review Progress

from symbiont import ReviewStatus

# Get review session details
session = client.get_review_session("review-123")
print(f"Review status: {session.status}")
print(f"Submitted by: {session.submitted_by}")

# Check if analysis is complete
if session.state.analysis_id:
    analysis = client.get_analysis_results(session.state.analysis_id)
    print(f"Risk score: {analysis.risk_score}/100")
    print(f"Found {len(analysis.findings)} security findings")
    
    for finding in analysis.findings:
        print(f"- {finding.severity.upper()}: {finding.title}")

List Review Sessions

# List all review sessions with filtering
sessions = client.list_review_sessions(
    page=1,
    limit=10,
    status="pending_review",
    author="developer@example.com"
)

print(f"Found {len(sessions.sessions)} sessions")
for session in sessions.sessions:
    print(f"- {session.review_id}: {session.tool.name} ({session.status})")

Wait for Review Completion

# Wait for review to complete (with timeout)
try:
    final_session = client.wait_for_review_completion("review-123", timeout=300)
    print(f"Review completed with status: {final_session.status}")
    
    if final_session.status == "approved":
        print("Tool approved for signing!")
    elif final_session.status == "rejected":
        print("Tool rejected. Check review comments.")
        
except TimeoutError:
    print("Review did not complete within timeout period")

Submit Human Review Decision

from symbiont import HumanReviewDecision

# Submit reviewer decision
decision = HumanReviewDecision(
    decision="approve",
    comments="Tool looks safe after manual review",
    reviewer_id="reviewer@example.com"
)

result = client.submit_human_review_decision("review-123", decision)
print(f"Decision submitted: {result}")

Sign Approved Tool

from symbiont import SigningRequest

# Sign an approved tool
signing_request = SigningRequest(
    review_id="review-123",
    signing_key_id="key-456"
)

signature = client.sign_approved_tool(signing_request)
print(f"Tool signed at {signature.signed_at}")
print(f"Signature: {signature.signature}")

# Get signed tool information
signed_tool = client.get_signed_tool("review-123")
print(f"Signed tool: {signed_tool.tool.name}")
print(f"Signature algorithm: {signed_tool.signature_algorithm}")

Error Handling

The SDK provides specific exception classes for different types of errors:

from symbiont import (
    Client, APIError, AuthenticationError, 
    NotFoundError, RateLimitError, SymbiontError
)

client = Client()

try:
    # Make an API request
    session = client.get_review_session("non-existent-review")
    
except AuthenticationError as e:
    print(f"Authentication failed: {e}")
    print("Please check your API key")
    
except NotFoundError as e:
    print(f"Resource not found: {e}")
    print(f"Response: {e.response_text}")
    
except RateLimitError as e:
    print(f"Rate limit exceeded: {e}")
    print("Please wait before making more requests")
    
except APIError as e:
    print(f"API error (status {e.status_code}): {e}")
    print(f"Response: {e.response_text}")
    
except SymbiontError as e:
    print(f"SDK error: {e}")
    
except Exception as e:
    print(f"Unexpected error: {e}")

Exception Hierarchy

  • SymbiontError - Base exception for all SDK errors
    • APIError - Generic API errors (4xx and 5xx status codes)
    • AuthenticationError - 401 Unauthorized responses
    • NotFoundError - 404 Not Found responses
    • RateLimitError - 429 Too Many Requests responses

Advanced Usage

Working with Models

All API responses are automatically converted to typed Pydantic models:

from symbiont import ReviewSession, SecurityFinding, FindingSeverity

# Models provide type safety and validation
session = client.get_review_session("review-123")

# Access typed attributes
session_id: str = session.review_id
status: ReviewStatus = session.status
submitted_time: datetime = session.submitted_at

# Work with nested models
if session.state.critical_findings:
    for finding in session.state.critical_findings:
        finding_id: str = finding.finding_id
        severity: FindingSeverity = finding.severity
        confidence: float = finding.confidence

Batch Operations

# Submit multiple tools for review
tools_to_review = [tool1, tool2, tool3]
review_sessions = []

for tool in tools_to_review:
    request = ReviewSessionCreate(
        tool=tool,
        submitted_by="batch@example.com"
    )
    session = client.submit_tool_for_review(request)
    review_sessions.append(session)

print(f"Submitted {len(review_sessions)} tools for review")

# Monitor all sessions
for session in review_sessions:
    current_status = client.get_review_session(session.review_id)
    print(f"Tool {current_status.tool.name}: {current_status.status}")

Testing

Install Development Dependencies

pip install -r requirements-dev.txt

Run Tests

# Run all tests
pytest

# Run tests with coverage
pytest --cov=symbiont

# Run specific test file
pytest tests/test_client.py

# Run tests with verbose output
pytest -v

Running Tests in Development

# Create a virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt

# Run tests
pytest

Requirements

  • Python 3.7+
  • requests
  • pydantic
  • python-dotenv

What's New in v0.3.0

Major New Features

  • Secrets Management System: Complete secrets management with HashiCorp Vault, encrypted files, and OS keychain integration
  • MCP Management: Enhanced Model Context Protocol server management and tool integration
  • Vector Database & RAG: Knowledge management with vector similarity search and retrieval-augmented generation
  • Agent DSL Operations: DSL compilation and agent deployment capabilities
  • Enhanced Monitoring: Comprehensive system and agent metrics
  • Security Enhancements: Advanced signing and verification workflows

Secrets Management

from symbiont import (
    Client, SecretBackendConfig, SecretBackendType,
    VaultConfig, VaultAuthMethod, SecretRequest
)

client = Client()

# Configure HashiCorp Vault backend
vault_config = VaultConfig(
    url="https://vault.example.com",
    auth_method=VaultAuthMethod.TOKEN,
    token="hvs.abc123..."
)

backend_config = SecretBackendConfig(
    backend_type=SecretBackendType.VAULT,
    vault_config=vault_config
)

client.configure_secret_backend(backend_config)

# Store and retrieve secrets
secret_request = SecretRequest(
    agent_id="agent-123",
    secret_name="api_key",
    secret_value="secret_value_here",
    description="API key for external service"
)

response = client.store_secret(secret_request)
print(f"Secret stored: {response.secret_name}")

# Retrieve secret
secret_value = client.get_secret("agent-123", "api_key")
print(f"Retrieved secret: {secret_value}")

# List all secrets for an agent
secrets_list = client.list_secrets("agent-123")
print(f"Agent secrets: {secrets_list.secrets}")

MCP Management

from symbiont import McpServerConfig

# Add MCP server
mcp_config = McpServerConfig(
    name="filesystem-server",
    command=["npx", "@modelcontextprotocol/server-filesystem", "/tmp"],
    env={"NODE_ENV": "production"},
    timeout_seconds=30
)

client.add_mcp_server(mcp_config)

# Connect to server
client.connect_mcp_server("filesystem-server")

# List available tools and resources
tools = client.list_mcp_tools("filesystem-server")
resources = client.list_mcp_resources("filesystem-server")

print(f"Available tools: {[tool.name for tool in tools]}")
print(f"Available resources: {[resource.uri for resource in resources]}")

# Get connection status
connection_info = client.get_mcp_server("filesystem-server")
print(f"Status: {connection_info.status}")
print(f"Tools count: {connection_info.tools_count}")

Vector Database & RAG

from symbiont import (
    KnowledgeItem, VectorMetadata, KnowledgeSourceType,
    VectorSearchRequest, ContextQuery
)

# Add knowledge items
metadata = VectorMetadata(
    source="documentation.md",
    source_type=KnowledgeSourceType.DOCUMENT,
    timestamp=datetime.now(),
    agent_id="agent-123"
)

knowledge_item = KnowledgeItem(
    id="doc-001",
    content="This is important documentation about the system...",
    metadata=metadata
)

client.add_knowledge_item(knowledge_item)

# Search knowledge base
search_request = VectorSearchRequest(
    query="How do I configure the system?",
    agent_id="agent-123",
    source_types=[KnowledgeSourceType.DOCUMENT],
    limit=5,
    similarity_threshold=0.7
)

search_results = client.search_knowledge(search_request)
for result in search_results.results:
    print(f"Score: {result.similarity_score}")
    print(f"Content: {result.item.content[:100]}...")

# Get context for RAG operations
context_query = ContextQuery(
    query="How do I set up authentication?",
    agent_id="agent-123",
    max_context_items=3
)

context = client.get_context(context_query)
print(f"Retrieved {len(context.context_items)} context items")
print(f"Sources: {context.sources}")

Agent DSL Operations

from symbiont import DslCompileRequest, AgentDeployRequest

# Compile DSL code
dsl_code = """
agent webhook_handler {
    name: "Webhook Handler"
    description: "Handles incoming webhooks"
    
    trigger github_webhook {
        on_push: main
    }
    
    action process_webhook {
        validate_signature()
        parse_payload()
        trigger_workflow()
    }
}
"""

compile_request = DslCompileRequest(
    dsl_content=dsl_code,
    agent_name="webhook_handler",
    validate_only=False
)

compile_result = client.compile_dsl(compile_request)
if compile_result.success:
    print(f"Compiled successfully: {compile_result.agent_id}")
    
    # Deploy the agent
    deploy_request = AgentDeployRequest(
        agent_id=compile_result.agent_id,
        environment="production",
        config_overrides={"max_concurrent_tasks": 10}
    )
    
    deployment = client.deploy_agent(deploy_request)
    print(f"Deployed: {deployment.deployment_id}")
    print(f"Endpoint: {deployment.endpoint_url}")
else:
    print(f"Compilation errors: {compile_result.errors}")

Enhanced Monitoring

# Get comprehensive system metrics
system_metrics = client.get_metrics()
print(f"Memory usage: {system_metrics.memory_usage_percent}%")
print(f"CPU usage: {system_metrics.cpu_usage_percent}%")
print(f"Active agents: {system_metrics.active_agents}")
print(f"Vector DB items: {system_metrics.vector_db_items}")
print(f"MCP connections: {system_metrics.mcp_connections}")

# Get agent-specific metrics
agent_metrics = client.get_agent_metrics("agent-123")
print(f"Tasks completed: {agent_metrics.tasks_completed}")
print(f"Average response time: {agent_metrics.average_response_time_ms}ms")
print(f"Agent uptime: {agent_metrics.uptime_seconds}s")

Previous Release Notes

v0.2.0

  • Tool Review API: Complete implementation of tool review workflows
  • Runtime API: Agent management, workflow execution, and system metrics
  • Enhanced Models: Comprehensive type definitions for all API responses
  • Better Error Handling: Specific exceptions for different error conditions
  • Improved Documentation: Complete API reference with examples

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Setting up for Development

  1. Fork the repository
  2. Clone your fork locally
  3. Set up development environment:
git clone https://github.com/yourusername/symbiont-sdk-python.git
cd symbiont-sdk-python
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -r requirements.txt
pip install -r requirements-dev.txt
  1. Run tests to ensure everything works:
pytest
ruff check symbiont/
bandit -r symbiont/
  1. Make your changes and add tests
  2. Submit a pull request

Release Process

Releases are automated through GitHub Actions:

  1. CI/CD: Every push/PR triggers testing across Python 3.8-3.12
  2. Release: Create a new tag with format v*.*.* (e.g., v0.2.0) to trigger:
    • Automated testing
    • Package building
    • PyPI publishing
    • GitHub release creation

Setting up PyPI Publishing (Maintainers)

For repository maintainers, set up these GitHub repository secrets:

  • PYPI_API_TOKEN: PyPI API token for automated publishing

To create a PyPI API token:

  1. Go to PyPI Account Settings → API tokens
  2. Create new token with scope for this project
  3. Add to GitHub repository secrets as PYPI_API_TOKEN

Container Registry Publishing

The Docker workflow automatically publishes container images to GitHub Container Registry:

  • Latest image: Published on every push to main branch (ghcr.io/thirdkeyai/symbiont-sdk-python:latest)
  • Version tags: Published on release tags (ghcr.io/thirdkeyai/symbiont-sdk-python:v0.2.0)
  • Branch tags: Published for feature branches during development

Images are built for multiple architectures (linux/amd64, linux/arm64) and include:

  • Multi-stage optimized builds for smaller image size
  • Non-root user execution for security
  • Health checks for container monitoring
  • Full SDK functionality with all dependencies

Both the release workflow (PyPI) and Docker workflow (container registry) will automatically run when a new tag is pushed.