An advanced analytics platform for investigating correlations between student lifestyle patterns and academic outcomes through machine learning and statistical analysis.
-
Robust Data Processing Pipeline
- Automated data cleaning and normalization
- Missing value imputation using advanced techniques
- Feature engineering and selection
-
Comprehensive Analytics Suite
- Time-series analysis of study patterns
- Multi-dimensional correlation studies
- Predictive modeling using ML algorithms
-
Interactive Visualizations
- Dynamic Plotly dashboards
- Real-time data exploration
- Custom reporting capabilities
Core Analysis: Python, NumPy, Pandas
ML Framework: scikit-learn, TensorFlow
Visualization: Plotly, Seaborn
Statistics: SciPy, StatsModels
student_metrics = {
'behavioral_metrics': ['study_hours', 'sleep_pattern', 'social_media_usage'],
'academic_metrics': ['attendance', 'exam_scores', 'participation'],
'environmental_factors': ['internet_quality', 'study_environment'],
'psychological_indicators': ['stress_level', 'motivation_score']
}
-
Environment Setup
python -m venv venv source venv/bin/activate # Unix pip install -r requirements.txt
-
Run Analysis
python src/main.py --data-path /path/to/data --analysis-type full
Factor | Correlation | Significance |
---|---|---|
Study Hours | 0.78 | p < 0.001 |
Sleep Quality | 0.65 | p < 0.001 |
Social Media | -0.45 | p < 0.01 |
Please see CONTRIBUTING.md for guidelines.
MIT License - see LICENSE.md
For queries: research@studentanalytics.io
Note: This is a research project. See our documentation for methodology details.