Skip to content

Victor-Marti/PERFORMANCE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📚 Student Performance Analytics Platform

License: MIT Python Code style: black

An advanced analytics platform for investigating correlations between student lifestyle patterns and academic outcomes through machine learning and statistical analysis.

🎯 Key Features

  • Robust Data Processing Pipeline

    • Automated data cleaning and normalization
    • Missing value imputation using advanced techniques
    • Feature engineering and selection
  • Comprehensive Analytics Suite

    • Time-series analysis of study patterns
    • Multi-dimensional correlation studies
    • Predictive modeling using ML algorithms
  • Interactive Visualizations

    • Dynamic Plotly dashboards
    • Real-time data exploration
    • Custom reporting capabilities

🛠️ Technical Stack

Core Analysis: Python, NumPy, Pandas
ML Framework: scikit-learn, TensorFlow
Visualization: Plotly, Seaborn
Statistics: SciPy, StatsModels

📊 Dataset Schema

student_metrics = {
        'behavioral_metrics': ['study_hours', 'sleep_pattern', 'social_media_usage'],
        'academic_metrics': ['attendance', 'exam_scores', 'participation'],
        'environmental_factors': ['internet_quality', 'study_environment'],
        'psychological_indicators': ['stress_level', 'motivation_score']
}

🚀 Quick Start

  1. Environment Setup

    python -m venv venv
    source venv/bin/activate  # Unix
    pip install -r requirements.txt
  2. Run Analysis

    python src/main.py --data-path /path/to/data --analysis-type full

📈 Key Findings

Factor Correlation Significance
Study Hours 0.78 p < 0.001
Sleep Quality 0.65 p < 0.001
Social Media -0.45 p < 0.01

🤝 Contributing

Please see CONTRIBUTING.md for guidelines.

📝 License

MIT License - see LICENSE.md

📧 Contact

For queries: research@studentanalytics.io

Note: This is a research project. See our documentation for methodology details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published