This project implements a complete Stock Market Data Lifecycle:
- Fetches historical stock price data using Yahoo Finance API.
- Stores raw and cleaned data into a MySQL database using SQLAlchemy.
- Applies data cleaning and feature engineering (moving averages, volatility, RSI).
- Conducts interactive Exploratory Data Analysis (EDA) with Matplotlib, Seaborn, and ipywidgets.
The project is organized using Object-Oriented Programming (OOP) principles for better modularity and scalability.
- Automated Data Fetching from Yahoo Finance.
- Database Management with SQLAlchemy (MySQL backend).
- Preprocessing and Feature Engineering (MA20, MA50, Volatility, RSI14).
- Interactive Data Visualization using widgets.
- Versioned Release: v1.0.0 (First Stable Release).
├── scripts/
│ ├── fetch_data.py
│ ├── preprocess_data.py
│ ├── feature_engineering.py
│ └── eda.ipynb
├── database_manager.py
├── feature_engineer.py
├── README.md
- Language: Python
- Database: MySQL
- Libraries:
- pandas
- yfinance
- SQLAlchemy
- matplotlib, seaborn
- ipywidgets
-
Clone the repository:
git clone https://github.com/arabind-meher/Stock-Market-Data-Lifecycle-FAANG-Companies.git
-
Set up a MySQL database and update connection strings if needed.
-
Install required libraries:
pip install -r requirements.txt
-
Run scripts sequentially:
- Fetch stock data
- Preprocess the data
- Apply feature engineering
- Explore using EDA notebook
Version | Description | Date |
---|---|---|
v1.0.0 | Initial complete pipeline | May 2025 |
This project is licensed under the MIT License.
- Add ML models for stock trend prediction.
- Dockerize the entire project for easier deployment.
- Scheduled auto-updates for fetching latest data.