A command-line interface for generating production-ready A2A (Agent-to-Agent) servers from Agent Definition Language (ADL) files.
⚠️ Early Development Warning: This project is in its early stages of development. Breaking changes are expected and acceptable until we reach a stable version. Use with caution in production environments.
- Overview
- Installation
- Quick Start
- Usage
- Agent Definition Language (ADL)
- Generated Project Structure
- Sandbox Environments
- Enterprise Features
- GitHub Issue Templates
- Examples
- Template System & Architecture
- Customizing Generation with .adl-ignore
- Configurable Acronyms
- Post-Generation Hooks
- Development
- Roadmap
- License
- Support
The ADL CLI helps you build production-ready A2A agents quickly by generating complete project scaffolding from YAML-based Agent Definition Language (ADL) files. It eliminates boilerplate code and ensures consistent patterns across your agent implementations.
- 🚀 Rapid Development - Generate complete projects in seconds
- 📋 Schema-Driven - Use YAML Agent Definition Language files (ADL) to define your agents
- 🎯 Production Ready - Single unified template with AI integration and enterprise features
- 🔐 Enterprise Features - Authentication, SCM integration, and audit logging
- 🛠️ Smart Ignore - Protect your implementations with .adl-ignore files
- ✅ Validation - Built-in ADL schema validation
- 🛠️ Interactive Setup - Guided project initialization with extensive CLI options
- 🔗 Structured Dependencies - Type-safe dependency injection with interfaces and factory functions
- ⚙️ Configuration Management - Automatic environment variable mapping with proper naming conventions
- 🔧 CI/CD Generation - Automatic GitHub Actions workflows with semantic-release CD pipelines
- 🏗️ Sandbox Environments - Flox and DevContainer support for isolated development
- 🎣 Post-Generation Hooks - Customize build, format, and test commands after generation
- 🤖 Multi-Provider AI - OpenAI, Anthropic, DeepSeek, Ollama, Google, Mistral, and Groq support
Use our install script to automatically download and install the latest binary:
curl -fsSL https://raw.github.com/inference-gateway/adl-cli/main/install.sh | bash
Or download and run the script manually:
wget https://raw.github.com/inference-gateway/adl-cli/main/install.sh
chmod +x install.sh
./install.sh
Install Options:
- Install specific version:
./install.sh --version v1.0.0
- Custom install directory:
INSTALL_DIR=~/bin ./install.sh
- Show help:
./install.sh --help
git clone https://github.com/inference-gateway/adl-cli.git
cd adl-cli
go install .
go install github.com/inference-gateway/adl-cli@latest
Download pre-built binaries from the releases page.
# Interactive project setup - creates ADL manifest
adl init my-weather-agent
# Generate project code from the manifest
adl generate --file agent.yaml --output ./test-my-agent
The generated project includes TODO placeholders for your implementations:
// TODO: Implement weather API logic
func GetWeatherTool(ctx context.Context, args map[string]any) (string, error) {
city := args["city"].(string)
// TODO: Replace with actual weather API call
return fmt.Sprintf(`{"city": "%s", "temp": "22°C"}`, city), nil
}
cd test-weather-agent
task build
task run
Command | Description |
---|---|
adl init [name] |
Create ADL manifest file interactively with options |
adl generate |
Generate project code from ADL file with CI/CD and sandbox support |
adl validate [file] |
Validate an ADL file against the complete schema |
The adl init
command provides a interactive wizard for creating ADL manifest files:
# Interactive ADL manifest creation
adl init my-weather-agent
# Use defaults for all prompts
adl init my-agent --defaults
# Non-interactive with specific configuration
adl init my-agent \
--name "Weather Agent" \
--description "Provides weather information" \
--provider openai \
--model gpt-4o-mini \
--language go \
--flox
The init command supports extensive configuration options:
Project Settings:
--defaults
- Use default values for all prompts--path
- Project directory path--name
- Agent name--description
- Agent description--version
- Agent version
Agent Configuration:
--type
- Agent type (ai-powered
/minimal
)--provider
- AI provider (openai
/anthropic
/deepseek
/ollama
/google
/mistral
/groq
)--model
- AI model name--system-prompt
- System prompt for the agent--max-tokens
- Maximum tokens (integer)--temperature
- Temperature (0.0-2.0)
Capabilities:
--streaming
- Enable streaming responses--notifications
- Enable push notifications--history
- Enable state transition history
Server Configuration:
--port
- Server port (integer)--debug
- Enable debug mode
Language-Specific Options:
--language
- Programming language (go
/rust
, TypeScript support planned)
Go Options:
--go-module
- Go module path (e.g.,github.com/user/project
)--go-version
- Go version (e.g.,1.24
)
Rust Options:
--rust-package-name
- Rust package name--rust-version
- Rust version (e.g.,1.88
)--rust-edition
- Rust edition (e.g.,2024
)
TypeScript Options:
--typescript-name
- TypeScript package name
Environment Options:
--flox
- Enable Flox environment--devcontainer
- Enable DevContainer environment
# Generate project from ADL file
adl generate --file agent.yaml --output ./test-my-agent
# Overwrite existing files (respects .adl-ignore)
adl generate --file agent.yaml --output ./test-my-agent --overwrite
# Generate with CI workflow configuration
adl generate --file agent.yaml --output ./test-my-agent --ci
# Generate with AI assistant instructions and claude-code integration
adl generate --file agent.yaml --output ./test-my-agent --ai
# Generate with CloudRun deployment configuration
adl generate --file agent.yaml --output ./test-my-agent --deployment cloudrun
# Generate with CloudRun deployment and CD pipeline
adl generate --file agent.yaml --output ./test-my-agent --deployment cloudrun --cd
Flag | Description |
---|---|
--file , -f |
ADL file to generate from (default: "agent.yaml") |
--output , -o |
Output directory for generated code (default: ".") |
--template , -t |
Template to use (default: "minimal") |
--overwrite |
Overwrite existing files (respects .adl-ignore) |
--ci |
Generate CI workflow configuration (GitHub Actions) |
--cd |
Generate CD pipeline configuration with semantic-release |
--deployment |
Generate deployment configuration (kubernetes , cloudrun ) |
--ai |
Generate AI assistant instructions (CLAUDE.md) and add claude-code to sandbox environments |
CI Generation Features:
- Automatic Provider Detection: Detects GitHub from ADL
spec.scm.provider
(GitLab support planned) - Language-Specific Workflows: Tailored CI configurations for Go, Rust, and TypeScript
- Version Integration: Uses language versions from ADL configuration
- Task Integration: Leverages generated Taskfile for consistent build processes
- Caching: Includes dependency caching for faster builds
CD Generation Features:
- Semantic Release Integration: Automatic versioning based on conventional commits
- Multi-Language Support: Builds and tests for Go, Rust, and TypeScript projects
- Container Publishing: Builds and pushes Docker images to GitHub Container Registry
- Manual Dispatch: CD workflow triggered manually via GitHub Actions
- Changelog Generation: Automatic CHANGELOG.md generation with release notes
- GitHub Releases: Creates GitHub releases with appropriate tagging
- Deployment Integration: Supports automatic deployment to Kubernetes and Cloud Run after successful releases
AI Integration Features:
The --ai
flag enables enhanced development experience with AI assistant capabilities:
- CLAUDE.md Generation: Creates AI assistant instructions tailored to your agent
- Project-specific guidelines based on your ADL configuration
- Language-specific development patterns and best practices
- Skills implementation guidance with TODO placeholders context
- Testing strategies and development workflow recommendations
- Claude Code Integration: Automatically adds claude-code to sandbox environments
- DevContainer integration for seamless AI-assisted development
- Flox environment integration with claude-code tooling
- Improved development experience with AI pair programming capabilities
Deployment Generation Features:
The --deployment
flag generates platform-specific deployment configurations:
- CloudRun Deployment: Creates a
deploy
task in the rootTaskfile.yml
for gcloud deployment- Supports both Google Container Registry (GCR) and GitHub Container Registry (GHCR)
- Configurable resources (CPU, memory), scaling (min/max instances), and service options
- Uses direct gcloud commands for truly serverless deployment (no Kubernetes required)
- Automatic container building with Docker or Cloud Build integration
- Kubernetes Deployment: Creates
k8s/deployment.yaml
with standard Kubernetes manifests- Production-ready configurations with resource limits and health checks
- ConfigMap and Secret integration for environment variables
- Service and Ingress configurations for load balancing
ADL files use YAML to define your agent's configuration, capabilities, and tools.
apiVersion: adl.dev/v1
kind: Agent
metadata:
name: weather-agent
description: "Provides weather information for cities worldwide"
version: "1.0.0"
spec:
capabilities:
streaming: true
pushNotifications: false
stateTransitionHistory: false
agent:
provider: "" # Choose: openai, anthropic, deepseek, ollama, google, mistral, groq
model: "" # Specify default model name for chosen provider
systemPrompt: "You are a helpful weather assistant."
maxTokens: 4096
temperature: 0.7
skills:
- name: get_weather
description: "Get current weather for a city"
schema:
type: object
properties:
city:
type: string
description: "City name"
country:
type: string
description: "Country code"
required:
- city
server:
port: 8080
debug: false
language:
go:
module: "github.com/example/weather-agent"
version: "1.24"
acronyms: ["api", "json", "xml"] # Optional: Custom acronyms for better code generation
The complete ADL schema includes:
- metadata: Agent name, description, and version
- capabilities: Streaming, notifications, state history
- config: Structured configuration sections with environment variable mapping
- dependencies: Service dependencies with interfaces, factories, and type definitions
- agent: AI provider configuration (OpenAI, Anthropic, DeepSeek, Ollama, Google, Mistral, Groq)
- skills: Function definitions with complex JSON schemas, validation, and dependency injection support
- server: HTTP server configuration with authentication support
- language: Programming language-specific settings (Go, Rust, TypeScript) and configurable acronyms
- scm: Source control management configuration (GitHub, GitLab)
- sandbox: Development environment configuration (Flox, DevContainer)
- deployment: Platform-specific deployment configuration (Kubernetes, Cloud Run)
apiVersion: adl.dev/v1
kind: Agent
metadata:
name: advanced-agent
description: "Enterprise agent with full feature set"
version: "1.0.0"
spec:
capabilities:
streaming: true
pushNotifications: true
stateTransitionHistory: true
agent:
provider: openai
model: gpt-4o-mini
systemPrompt: |
You are a helpful assistant with enterprise capabilities.
Always prioritize security and compliance.
maxTokens: 8192
temperature: 0.3
config:
database:
connectionString: "postgresql://user:pass@localhost:5432/db"
maxConnections: "10"
timeout: "30s"
notifications:
slackWebhook: "https://hooks.slack.com/services/..."
emailApiKey: "your-email-api-key"
retryAttempts: "3"
dependencies:
database:
type: service
interface: DatabaseService
factory: NewDatabaseService
description: PostgreSQL database service for persistent storage
notifications:
type: service
interface: NotificationService
factory: NewNotificationService
description: Multi-channel notification service
skills:
- name: query_database
description: "Execute database queries with validation"
inject:
- logger
- database
schema:
type: object
properties:
query:
type: string
description: "SQL query to execute"
table:
type: string
description: "Target table name"
limit:
type: integer
description: "Result limit"
maximum: 1000
required: [query, table]
- name: send_notification
description: "Send multi-channel notifications"
inject:
- logger
- notifications
schema:
type: object
properties:
recipient:
type: string
description: "Recipient identifier"
message:
type: string
description: "Message content"
priority:
type: string
enum: ["low", "medium", "high", "critical"]
channel:
type: string
enum: ["email", "slack", "teams", "webhook"]
required: [recipient, message, priority, channel]
server:
port: 8443
debug: false
auth:
enabled: true
language:
go:
module: "github.com/company/advanced-agent"
version: "1.24"
scm:
provider: github
url: "https://github.com/company/advanced-agent"
deployment:
type: cloudrun
cloudrun:
image:
registry: gcr.io
repository: advanced-agent
tag: latest
useCloudBuild: true
resources:
cpu: "2"
memory: 1Gi
scaling:
minInstances: 1
maxInstances: 100
concurrency: 1000
service:
timeout: 3600
allowUnauthenticated: false
serviceAccount: advanced-agent@PROJECT_ID.iam.gserviceaccount.com
executionEnvironment: gen2
environment:
LOG_LEVEL: info
ENVIRONMENT: production
sandbox:
flox:
enabled: true
The ADL CLI provides a sophisticated dependency injection system with structured configuration management. This system improves testability, separation of concerns, and provides type-safe configuration with environment variable mapping.
Define dependencies with explicit types, interfaces, and factory functions. The system supports both built-in dependencies (like logger) and custom service dependencies:
spec:
config:
googleCalendar:
scopes: "https://www.googleapis.com/auth/calendar"
credentialsPath: "/secrets/credentials.json"
cache:
ttl: "3600"
maxEntries: "1000"
dependencies:
googleCalendar:
type: service
interface: CalendarService
factory: NewCalendarService
description: Google Calendar API service for managing calendar events
cache:
type: service
interface: CacheRepository
factory: NewCacheRepository
description: High-performance caching layer for API responses
skills:
- name: create_event
description: "Create a new calendar event"
inject:
- logger # Built-in, always available
- googleCalendar # Custom dependency
- cache # Custom dependency
schema:
type: object
properties:
title:
type: string
description: "Event title"
start:
type: string
description: "Start time (ISO 8601)"
required: [title, start]
The configuration system generates type-safe structs with automatic environment variable mapping:
Generated Configuration (config/config.go
):
type Config struct {
// Core application settings
Environment string `env:"ENVIRONMENT"`
// A2A configuration
A2A serverConfig.Config `env:",prefix=A2A_"`
// Custom configuration sections
Cache CacheConfig `env:",prefix=CACHE_"`
GoogleCalendar GoogleCalendarConfig `env:",prefix=GOOGLE_CALENDAR_"`
}
type GoogleCalendarConfig struct {
CredentialsPath string `env:"CREDENTIALS_PATH"`
Scopes string `env:"SCOPES"`
}
type CacheConfig struct {
MaxEntries string `env:"MAX_ENTRIES"`
Ttl string `env:"TTL"`
}
Environment Variables:
GOOGLE_CALENDAR_CREDENTIALS_PATH="/secrets/google-creds.json"
GOOGLE_CALENDAR_SCOPES="https://www.googleapis.com/auth/calendar"
CACHE_MAX_ENTRIES="1000"
CACHE_TTL="3600"
The dependency injection system generates:
- Built-in Logger: Automatically available as
*zap.Logger
without declaration - Type-Safe Configuration: Structured config with environment variable mapping
- Service Interfaces: Custom dependency packages with interface definitions
- Factory Functions: Constructor functions that receive logger and configuration
- Automatic Registration: Dependencies are automatically wired into skills
- File Protection: Generated dependency files are automatically added to
.adl-ignore
my-agent/
├── config/
│ └── config.go # Type-safe configuration with env mapping
├── internal/
│ ├── logger/
│ │ └── logger.go # Built-in logger factory
│ ├── googleCalendar/
│ │ └── googleCalendar.go # Calendar service with interface
│ └── cache/
│ └── cache.go # Cache service with interface
├── skills/
│ ├── create_event.go # Skills with injected dependencies
│ └── list_events.go
└── .adl-ignore # Protects custom implementations
Each dependency generates a package with interface and factory:
Example internal/googleCalendar/googleCalendar.go
:
type CalendarService interface {
// TODO: Define your CalendarService interface methods
CreateEvent(ctx context.Context, event *Event) error
ListEvents(ctx context.Context, query *Query) ([]*Event, error)
}
type calendarService struct {
logger *zap.Logger
config *config.Config
}
func NewCalendarService(logger *zap.Logger, cfg *config.Config) (CalendarService, error) {
// TODO: Implement CalendarService initialization
return &calendarService{
logger: logger,
config: cfg,
}, nil
}
Skills automatically receive injected dependencies as constructor parameters:
Example skills/create_event.go
:
type CreateEventSkill struct {
logger *zap.Logger
calendar googleCalendar.CalendarService
cache cache.CacheRepository
}
func NewCreateEventSkill(logger *zap.Logger, calendar googleCalendar.CalendarService, cache cache.CacheRepository) *CreateEventSkill {
return &CreateEventSkill{
logger: logger,
calendar: calendar,
cache: cache,
}
}
- Type Safety: Structured configuration with compile-time validation
- Environment Variables: Automatic mapping with proper naming conventions
- Interface-Based Design: Testable dependencies with clear contracts
- Separation of Concerns: Configuration separate from dependency definitions
- Language Agnostic: Works across Go, Rust, and planned TypeScript support
- Hot Reload: Configuration changes via environment variables
- Security: No secrets in code, environment-based configuration
- Scalability: Easy to add new dependencies and configuration sections
- Configuration: Use environment variables for secrets and environment-specific values
- Interfaces: Define clear interfaces for testability and modularity
- Factory Functions: Initialize dependencies with proper error handling
- Logging: Use the injected logger for consistent log formatting
- Testing: Create mock implementations of dependency interfaces
- Documentation: Document interface methods and configuration options
The ADL CLI generates project scaffolding tailored to your chosen language:
my-go-agent/
├── main.go # Main server setup
├── go.mod # Go module definition
├── config/
│ └── config.go # Centralized application configuration
├── internal/
│ └── logger/
│ └── logger.go # Built-in logger factory
├── skills/ # Skill implementations directory
│ ├── query_database.go # Individual skill files (TODO placeholders)
│ └── send_notification.go
├── Taskfile.yml # Development tasks (build, test, lint)
├── Dockerfile # Container configuration
├── .adl-ignore # Files to protect from regeneration
├── .well-known/
│ └── agent.json # Agent capabilities (auto-generated)
├── .github/ # GitHub-specific configurations
│ ├── workflows/ # Generated when using --ci flag
│ │ ├── ci.yml # GitHub Actions CI workflow
│ │ └── cd.yml # GitHub Actions CD workflow (with --cd flag)
│ └── ISSUE_TEMPLATE/ # Generated when issue_templates: true
│ ├── bug_report.md # Bug report template
│ ├── feature_request.md # Feature request template
│ └── refactor_request.md # Refactoring request template
├── .releaserc.yaml # Semantic-release configuration (with --cd flag)
├── k8s/
│ └── deployment.yaml # Kubernetes deployment manifest
├── cloudrun/
│ └── deploy.sh # CloudRun deployment script (with --deployment cloudrun)
├── .flox/ # Generated when sandbox: flox
│ ├── env/manifest.toml
│ ├── env.json
│ ├── .gitignore
│ └── .gitattributes
├── .gitignore # Standard Git ignore patterns
├── .gitattributes # Git attributes configuration
├── .editorconfig # Editor configuration
├── CLAUDE.md # AI assistant instructions (generated with --ai flag)
└── README.md # Project documentation with setup instructions
my-rust-agent/
├── src/
│ ├── main.rs # Main application entry point
│ └── skills/ # Skill implementations directory
│ ├── mod.rs # Module declarations
│ ├── query_database.rs # Individual skill implementations
│ └── send_notification.rs
├── Cargo.toml # Rust package configuration
├── Taskfile.yml # Development tasks
├── Dockerfile # Rust-optimized container
├── .adl-ignore # Protection configuration
├── .well-known/
│ └── agent.json # Agent capabilities
├── .github/workflows/ # CI configuration (with --ci)
│ ├── ci.yml # Rust-specific CI workflow
│ └── cd.yml # GitHub Actions CD workflow (with --cd flag)
├── .releaserc.yaml # Semantic-release configuration (with --cd flag)
├── k8s/
│ └── deployment.yaml # Kubernetes deployment
├── cloudrun/
│ └── deploy.sh # CloudRun deployment script (with --deployment cloudrun)
├── CLAUDE.md # AI assistant instructions (generated with --ai flag)
└── README.md # Documentation
All projects include these essential files regardless of language:
.well-known/agent.json
- A2A agent discovery and capabilities manifestTaskfile.yml
- Unified task runner configuration for build, test, lint, runDockerfile
- Language-optimized container configurationk8s/deployment.yaml
- Kubernetes deployment manifestdeploy
task inTaskfile.yml
- CloudRun deployment task (when using--deployment cloudrun
).adl-ignore
- Protects user implementations from overwrite- CI Workflows - When using
--ci
flag, generates GitHub Actions workflows:- GitHub Actions:
.github/workflows/ci.yml
- GitLab CI:
.gitlab-ci.yml
(planned, not yet implemented)
- GitHub Actions:
- CD Workflows - When using
--cd
flag, generates continuous deployment:- GitHub Actions:
.github/workflows/cd.yml
- Semantic Release:
.releaserc.yaml
- GitHub Actions:
- Development Environment - Based on
sandbox
configuration:- Flox:
.flox/
directory with environment configuration whensandbox.flox.enabled: true
- DevContainer:
.devcontainer/devcontainer.json
whensandbox.devcontainer.enabled: true
- Flox:
- AI Assistant Instructions - When using
--ai
flag:- CLAUDE.md: AI assistant instructions tailored to your agent configuration
When using the --ci
flag, the ADL CLI generates GitHub Actions workflows for your project:
# Generate project with CI workflow
adl generate --file agent.yaml --output ./test-my-agent --ci
This creates a GitHub Actions workflow (.github/workflows/ci.yml
) that includes:
- Automated Testing: Runs all tests on every push and pull request
- Code Quality: Format checking and linting
- Multi-Environment: Supports main and develop branches
- Caching: Go module caching for faster builds
- Task Integration: Uses the generated Taskfile for consistent build steps
The generated workflow automatically detects your Go version from the ADL file and configures the appropriate environment.
The ADL CLI can generate continuous deployment (CD) pipelines with semantic release automation:
# Generate project with CD pipeline
adl generate --file agent.yaml --output ./test-my-agent --cd
This creates a complete CD setup including:
.releaserc.yaml
- Semantic-release configuration with conventional commits.github/workflows/cd.yml
- GitHub Actions CD workflow with manual dispatch
The generated CD pipeline includes:
- Semantic Versioning: Automatic version bumping based on conventional commit messages
- Release Automation: Creates GitHub releases with generated release notes
- Container Publishing: Builds and publishes Docker images to GitHub Container Registry
- Multi-Platform Builds: Supports both AMD64 and ARM64 architectures
- Language Detection: Automatically configures build steps based on your project language
- Change Detection: Only publishes releases when there are changes to release
Manual Trigger: The CD workflow uses workflow_dispatch
for controlled releases:
# Trigger via GitHub CLI
gh workflow run cd.yml
# Or trigger via GitHub Actions UI
Conventional Commits Support: The pipeline recognizes these commit types for versioning:
feat:
- Minor version bump (new features)fix:
- Patch version bump (bug fixes)refactor:
,perf:
,ci:
,docs:
,style:
,test:
,build:
,chore:
- Patch version bump
Container Registry: Published images are available at:
ghcr.io/your-org/your-agent:latest
ghcr.io/your-org/your-agent:v1.0.0
ghcr.io/your-org/your-agent:1.0
The ADL CLI provides native support for deploying A2A agents to Google Cloud Run, offering a truly serverless deployment experience without Kubernetes complexity.
Configure CloudRun deployment in your ADL file:
spec:
deployment:
type: cloudrun
cloudrun:
image:
registry: gcr.io # gcr.io or ghcr.io
repository: my-agent # Repository name
tag: latest # Image tag
useCloudBuild: true # Use Cloud Build or local Docker
resources:
cpu: "2" # CPU allocation (0.1 to 8)
memory: 1Gi # Memory limit (128Mi to 32Gi)
scaling:
minInstances: 0 # Minimum instances (0 to 1000)
maxInstances: 100 # Maximum instances (1 to 1000)
concurrency: 1000 # Max concurrent requests per instance
service:
timeout: 3600 # Request timeout in seconds
allowUnauthenticated: true # Allow public access
serviceAccount: my-agent@PROJECT_ID.iam.gserviceaccount.com
executionEnvironment: gen2 # gen1 or gen2
environment: # Custom environment variables
LOG_LEVEL: info
ENVIRONMENT: production
Google Container Registry (GCR):
image:
registry: gcr.io
repository: my-project/my-agent
useCloudBuild: true # Automatically build and push
GitHub Container Registry (GHCR):
image:
registry: ghcr.io
repository: myorg/my-agent
useCloudBuild: false # Skip Cloud Build, use pre-built image
When using --deployment cloudrun
, the ADL CLI generates a deploy
task in the Taskfile.yml
that:
- Validates Environment: Checks for required
PROJECT_ID
andREGION
variables - Container Building: Uses Docker locally or Cloud Build based on configuration
- Direct gcloud Deployment: Uses
gcloud run deploy
for serverless deployment - Configuration Summary: Displays all deployment settings for verification
# 1. Generate project with CloudRun deployment
adl generate --file agent.yaml --output ./my-agent --deployment cloudrun
# 2. Set required environment variables
export PROJECT_ID="my-gcp-project"
export REGION="us-central1"
# 3. Deploy to CloudRun
cd my-agent
task deploy
Generate CloudRun deployment with continuous deployment:
adl generate --file agent.yaml --deployment cloudrun --cd
This creates:
- CD Workflow: Automatically deploys to CloudRun after releases
- Environment Integration: Uses GitHub secrets for GCP authentication
- Multi-Environment Support: Deploy to different regions/projects
Required GitHub Secrets:
GCP_SA_KEY
: Service account key JSONGCP_PROJECT_ID
: Google Cloud project IDGCP_REGION
: Deployment region (e.g., us-central1)
- Truly Serverless: No Kubernetes clusters or infrastructure management
- Auto-Scaling: Scale to zero when idle, scale up automatically under load
- Pay-per-Use: Only pay for actual request processing time
- Global Edge: Deploy to multiple regions with traffic management
- Integrated Monitoring: Built-in logging, metrics, and tracing
- Custom Domains: HTTPS support with automatic SSL certificates
The CLI includes CloudRun example files:
# Validate CloudRun examples
adl validate examples/cloudrun-agent.yaml
adl validate examples/cloudrun-ghcr-agent.yaml
# Generate CloudRun projects
adl generate --file examples/cloudrun-agent.yaml --output ./cloudrun-test
adl generate --file examples/cloudrun-ghcr-agent.yaml --output ./ghcr-test
The ADL CLI supports multiple development environments for isolated, reproducible development:
Configure Flox for your project by adding to your ADL file:
spec:
sandbox:
flox:
enabled: true
Generated files:
.flox/env/manifest.toml
- Flox environment manifest with language-specific dependencies.flox/env.json
- Environment configuration.flox/.gitignore
- Flox-specific ignore patterns.flox/.gitattributes
- Git attributes for Flox files
Configure DevContainer for your project:
spec:
sandbox:
devcontainer:
enabled: true
Generated files:
.devcontainer/devcontainer.json
- VS Code DevContainer configuration with language support
You can enable multiple sandbox environments simultaneously:
spec:
sandbox:
flox:
enabled: true
devcontainer:
enabled: true
This generates both Flox and DevContainer configurations, allowing developers to choose their preferred environment.
- Reproducible Development - Consistent environments across team members
- Isolated Dependencies - No conflicts with system-wide installations
- Language-Specific Tooling - Pre-configured with appropriate development tools
- CI/CD Integration - Matches production environment characteristics
Enable server authentication in your ADL file:
spec:
server:
port: 8443
debug: false
auth:
enabled: true
This generates enterprise-ready authentication scaffolding in your project.
Configure source control management for automatic CI/CD provider detection:
spec:
scm:
provider: github # gitlab support planned
url: "https://github.com/company/my-agent"
github_app: false # optional: enable GitHub App for CD
issue_templates: true # optional: generate GitHub issue templates
Features:
- Automatic CI Detection - Generates appropriate workflows based on SCM provider
- Repository Integration - Links generated projects to source control
- Workflow Optimization - SCM-specific optimizations and best practices
- GitHub App Support - Enhanced security for enterprise CD pipelines
- Issue Templates - Generate GitHub issue templates for standardized bug reports and feature requests
For enterprise environments, you can enable GitHub App-based CD deployment for enhanced security:
spec:
scm:
provider: github
url: "https://github.com/company/my-agent"
github_app: true
GitHub App CD Benefits:
- Enhanced Security - App tokens are automatically revoked after pipeline execution
- Enterprise Compliance - Keeps main branch protected from direct pushes
- Bot Identity - Release operations performed by dedicated bot account
- Audit Trail - Clear attribution of automated actions
Required GitHub Secrets:
BOT_GH_APP_ID
- Your GitHub App IDBOT_GH_APP_PRIVATE_KEY
- Your GitHub App private key
When github_app: true
is set, the generated CD pipeline will use GitHub App authentication instead of the default GITHUB_TOKEN
, providing better security isolation for release management.
The ADL CLI supports multiple AI providers including OpenAI, Anthropic, DeepSeek, Ollama (for local LLMs), Google AI, Mistral, and Groq. Each provider requires appropriate API keys to be configured as environment variables. See the ADL examples above for configuration details.
The ADL CLI can automatically generate GitHub issue templates for your agent projects, providing standardized forms for bug reports, feature requests, and refactoring tasks:
spec:
scm:
provider: github
url: "https://github.com/company/my-agent"
issue_templates: true # Enable issue template generation
When issue_templates: true
is set, the following templates are generated in .github/ISSUE_TEMPLATE/
:
bug_report.md
- Structured bug reporting with severity levels, reproduction steps, and environment detailsfeature_request.md
- Feature proposals with use case descriptions and acceptance criteriarefactor_request.md
- Code improvement requests with motivation and impact analysis
Issue Template Features:
- Agent Context - Templates include agent name and version from your ADL metadata
- Structured Sections - Consistent formatting for better issue triage and tracking
- GitHub Integration - Automatic labels and assignees configured in frontmatter
- Severity Levels - Priority classification for bug reports (critical, high, medium, low)
- Environment Info - Sections for capturing logs, system details, and configurations
The CLI includes example ADL files in the examples/
directory:
# Validate examples
adl validate examples/go-agent.yaml
adl validate examples/rust-agent.yaml
adl validate examples/github-app-agent.yaml
adl validate examples/cloudrun-agent.yaml
adl validate examples/cloudrun-ghcr-agent.yaml
# Generate from examples
adl generate --file examples/go-agent.yaml --output ./test-go-agent
adl generate --file examples/rust-agent.yaml --output ./test-rust-agent
adl generate --file examples/github-app-agent.yaml --output ./test-github-app-agent --cd
adl generate --file examples/cloudrun-agent.yaml --output ./test-cloudrun-agent --deployment cloudrun
adl generate --file examples/cloudrun-ghcr-agent.yaml --output ./test-ghcr-agent --deployment cloudrun
# Generate with CI/CD pipeline
adl generate --file examples/github-app-agent.yaml --output ./enterprise-agent --ci --cd
adl generate --file examples/cloudrun-agent.yaml --output ./cloudrun-enterprise --deployment cloudrun --cd
Example ADL Files:
go-agent.yaml
- Basic Go agent with multiple skills and capabilitiesrust-agent.yaml
- Rust agent with enterprise featuresgithub-app-agent.yaml
- Enterprise agent with GitHub App CD integrationcloudrun-agent.yaml
- CloudRun deployment with Google Container Registrycloudrun-ghcr-agent.yaml
- CloudRun deployment with GitHub Container Registry
The ADL CLI uses a sophisticated template system that generates language-specific projects:
The generator automatically detects your target language from the ADL file:
// Automatic detection based on spec.language configuration
func DetectLanguageFromADL(adl *schema.ADL) string {
if adl.Spec.Language.Go != nil { return "go" }
if adl.Spec.Language.Rust != nil { return "rust" }
if adl.Spec.Language.TypeScript != nil { return "typescript" }
return "go" // default
}
Each language has its own file mapping that determines what gets generated:
Go Projects:
main.go
→ Go main server setupskills/{skillname}.go
→ Individual skill implementationsgo.mod
→ Go module configuration- Language-specific Dockerfile and CI configurations
Rust Projects:
src/main.rs
→ Rust main applicationsrc/skills/{skillname}.rs
→ Skill implementationssrc/skills/mod.rs
→ Module declarationsCargo.toml
→ Rust package configuration
Universal Files:
Taskfile.yml
→ Development task runner.well-known/agent.json
→ A2A capabilities manifestk8s/deployment.yaml
→ Kubernetes deployment- CI workflows and sandbox configurations
All templates receive a rich context object:
type Context struct {
ADL *schema.ADL // Complete ADL configuration
Metadata GeneratedMetadata // Generation metadata
Language string // Detected language
}
This allows templates to access any ADL configuration and generate language-appropriate code.
The ADL CLI automatically creates a .adl-ignore
file during project generation to protect files containing TODO implementations. This file works similar to .gitignore
and prevents important implementation files from being overwritten during subsequent generations.
When you generate a project, implementation files are automatically added to .adl-ignore
to protect your business logic from being overwritten during regeneration.
You can control which additional files are generated or updated by editing the .adl-ignore
file:
# .adl-ignore
# Skip Docker-related files if you have custom containerization
Dockerfile
docker-compose.yml
# Skip Kubernetes manifests if you use different deployment tools
k8s/
# Skip specific generated files you want to customize
middleware.go
auth.go
# Skip build configuration if you have custom setup
Taskfile.yml
- Use
#
for comments - Use
/
at the end to match directories - Use
*
for wildcards - Exact file paths or glob patterns
- Protects files during all
generate
operations
- Custom Deployment: Skip
Dockerfile
,k8s/
,docker-compose.yml
- Custom Build: Skip
Taskfile.yml
,Makefile
- Custom Auth: Skip
auth.go
,middleware.go
- Custom Documentation: Skip
README.md
- Go 1.24+
- Task (optional, for using Taskfile commands)
git clone https://github.com/inference-gateway/adl-cli.git
cd adl-cli
# Install dependencies
go mod download
# Build
task build
# Run tests
task test
# Format code
task fmt
# Lint
task lint
# Run tests
task test
# Test with coverage
task test:coverage
# Test all examples
task examples:test
# Generate all examples
task examples:generate
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run
task ci
to ensure everything passes - Submit a pull request
The ADL CLI includes support for configurable acronyms to improve code generation readability. This feature helps generate more readable function and struct names by properly capitalizing acronyms in generated code.
Define custom acronyms in your ADL file's spec.acronyms
field. These acronyms will be properly capitalized when generating identifiers in your code.
spec:
language:
go:
module: "github.com/company/my-agent"
version: "1.24"
acronyms: ["n8n", "xml", "mqtt", "iot", "uuid"]
Without custom acronyms:
get_n8n_docs
→GetN8nDocsSkill
process_xml_data
→ProcessXmlDataSkill
With custom acronyms:
get_n8n_docs
→GetN8NDocsSkill
process_xml_data
→ProcessXMLDataSkill
The following acronyms are recognized by default:
- Common: id, api, url, uri, json, xml, sql, html, css, js, ui, uuid
- Network: http, https, tcp, udp, ip, dns, tls, ssl
- Tech: cpu, gpu, ram, io, os, db
Your custom acronyms extend these defaults and take precedence over them.
The ADL CLI supports custom post-generation hooks that run automatically after project generation. These hooks allow you to execute commands like formatting, linting, testing, or custom setup scripts.
Each language has sensible defaults:
Go Projects:
go fmt ./...
- Format all Go source filesgo mod tidy
- Download dependencies and clean up go.mod
Rust Projects:
cargo fmt
- Format all Rust source filescargo check
- Check the project for errors
You can customize or extend the default behavior by adding a hooks
section to your ADL file:
apiVersion: adl.dev/v1
kind: Agent
metadata:
name: my-agent
spec:
# ... other configuration ...
# Custom post-generation hooks
hooks:
post:
- "go fmt ./..."
- "go mod tidy"
- "go vet ./..."
- "go test -short ./..."
- "golangci-lint run --fix"
- Override Defaults: When you specify custom hooks, they completely replace the language defaults
- Command Execution: Commands run in the generated project directory
- Error Handling: Failed commands show warnings but don't stop generation
- Sequential Execution: Commands run in the order specified
- Shell Support: Commands are executed through the system shell
Extended Go Development:
hooks:
post:
- "go mod download" # Download dependencies first
- "go generate ./..." # Generate code if needed
- "gofumpt -l -w ." # Improved formatting
- "golangci-lint run --fix" # Lint and auto-fix
- "go test -race -short ./..." # Run tests
- "go build -v ./..." # Verify build works
Rust with Additional Tools:
hooks:
post:
- "cargo fmt"
- "cargo clippy --fix --allow-dirty"
- "cargo check --all-targets"
- "cargo test --lib"
TypeScript/Node.js:
hooks:
post:
- "npm install"
- "npm run format"
- "npm run lint:fix"
- "npm run type-check"
- "npm test"
- Keep hooks fast - Avoid long-running commands that slow down generation
- Use error-tolerant commands - Commands should gracefully handle missing tools
- Order matters - Place dependencies first (e.g.,
npm install
beforenpm run lint
) - Document requirements - Note any required tools in your project README
The ADL CLI currently supports Go and Rust, with plans to expand to additional programming languages:
- Go - Full support with templates for main.go, go.mod, and tools
- Rust - Full support with templates for main.rs, Cargo.toml, and tools
-
TypeScript/Node.js - Template structure exists but templates not yet implemented
- Complete A2A agent generation with Express.js framework planned
- AI-powered agents with OpenAI/Anthropic integration
- Enterprise features (auth, metrics, logging)
- Docker and Kubernetes deployment configs
-
Python - Rapid prototyping and AI-first development
- FastAPI-based server generation
- Rich AI ecosystem integration
- Jupyter notebook support for development
- Java/Kotlin - Enterprise JVM support
- C#/.NET - Microsoft ecosystem integration
- Swift - Apple ecosystem and server-side Swift
- Multi-language projects - Generate polyglot agents with language-specific microservices
- Custom templates - User-defined project templates and scaffolding
- Plugin system - Extensible architecture for custom generators
- Cloud-native templates - Serverless (AWS Lambda, Vercel) and edge deployment support
We welcome community input on our roadmap! Please:
- 💡 Suggest new languages or frameworks via Issues
- 🤝 Contribute implementations for new languages (see Contributing Guide)
This project is licensed under the MIT License - see the LICENSE file for details.
- 📖 Documentation
- 💬 Discussions
- 🐛 Issues
🤖 Powered by the Inference Gateway ecosystem