Caution
This project is in active development. The API is subject to change and breaking changes may occur. Package may not work until first stable release (1.0.0).
Extract content from documents easily with Python.
- Extract from PDFs (other formats are coming soon)
- Streaming extraction for large documents and real-time results
- Process one or many files using batch extraction
- Choose what to extract (tables, text, images, etc.)
- Export results to JSON, CSV, Excel and others
- Simple and flexible API with high configurability
-
Using uv:
uv add docviz-python
Upgrading from previous version:
uv pip install docviz-python --upgrade
-
Using pip:
pip install docviz-python --upgrade
-
Directly from source:
git clone https://github.com/privateai-com/docviz.git cd docviz pip install -e .
import asyncio
import docviz
async def main():
# Create a document instance (can be a local file or a URL)
document = docviz.Document("path/to/your/document.pdf")
# Extract all content asynchronously
extractions = await document.extract_content()
# Save results (file name without extension, it will be inherited from chosen format)
extractions.save("results", save_format=docviz.SaveFormat.JSON)
asyncio.run(main())
import docviz
document = docviz.Document("path/to/your/document.pdf")
extractions = document.extract_content_sync()
extractions.save("results", save_format=docviz.SaveFormat.JSON)
import docviz
from pathlib import Path
# Process all PDF files in a directory
pdf_directory = Path("data/papers/")
output_dir = Path("output/")
output_dir.mkdir(exist_ok=True)
pdfs = pdf_directory.glob("*.pdf")
documents = [docviz.Document(str(pdf)) for pdf in pdfs]
extractions = docviz.batch_extract(documents)
for ext in extractions:
ext.save(output_dir, save_format=[docviz.SaveFormat.JSON, docviz.SaveFormat.CSV])
import docviz
document = docviz.Document("path/to/document.pdf")
# Extract only specific types of content
extractions = document.extract_content(
includes=[
docviz.ExtractionType.TABLE,
docviz.ExtractionType.TEXT,
docviz.ExtractionType.FIGURE,
docviz.ExtractionType.EQUATION,
]
)
extractions.save("selective_results", save_format=docviz.SaveFormat.JSON)
import docviz
document = docviz.Document("path/to/document.pdf")
extractions = document.extract_content(
extraction_config=docviz.ExtractionConfig(page_limit=30),
llm_config=LLMConfig(
model="gpt-4o-mini",
api_key=os.getenv("OPENAI_API_KEY"),
base_url="https://api.openai.com/v1",
)
)
extractions.save("configured_results", save_format=docviz.SaveFormat.JSON)
import docviz
document = docviz.Document("path/to/large_document.pdf")
# Process document in pages to save memory
for page_result in document.extract_streaming():
# Process each page
page_result.save(f"page_{page_result.page_number}", save_format=docviz.SaveFormat.JSON)
import docviz
from tqdm import tqdm
document = docviz.Document("path/to/document.pdf")
# Extract with progress bar
with tqdm(total=document.page_count, desc="Extracting content") as pbar:
extractions = document.extract_content(progress_callback=pbar.update)
extractions.save("progress_results", save_format=docviz.SaveFormat.JSON)
Project has a static site with docs and examples on almost all of its functionality. You can find it at GitHub Pages or build it on your own using sphinx
locally. All the dependencies are included in pyproject.toml under the docs
group.
- Basic Usage with 3 different approaches: simple, passing url to document, streaming example and custom configuration using OpenAI key.
- Streaming Processing with progress tracking and generator API.
- OpenAI API Example with custom configuration using OpenAI key.
Refer to CONTRIBUTING.md for more information.
This project is licensed under the MIT License. See the LICENSE file for details.