Skip to content

Repeat operation #2090

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Aug 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 35 additions & 34 deletions burn-book/src/building-blocks/tensor.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,40 +131,41 @@ for the sake of simplicity, we ignore type signatures. For more details, refer t

Those operations are available for all tensor kinds: `Int`, `Float`, and `Bool`.

| Burn | PyTorch Equivalent |
| ------------------------------------- | ------------------------------------ |
| `Tensor::cat(tensors, dim)` | `torch.cat(tensors, dim)` |
| `Tensor::empty(shape, device)` | `torch.empty(shape, device=device)` |
| `Tensor::from_primitive(primitive)` | N/A |
| `Tensor::stack(tensors, dim)` | `torch.stack(tensors, dim)` |
| `tensor.all()` | `tensor.all()` |
| `tensor.all_dim(dim)` | `tensor.all(dim)` |
| `tensor.any()` | `tensor.any()` |
| `tensor.any_dim(dim)` | `tensor.any(dim)` |
| `tensor.chunk(num_chunks, dim)` | `tensor.chunk(num_chunks, dim)` |
| `tensor.device()` | `tensor.device` |
| `tensor.dims()` | `tensor.size()` |
| `tensor.equal(other)` | `x == y` |
| `tensor.expand(shape)` | `tensor.expand(shape)` |
| `tensor.flatten(start_dim, end_dim)` | `tensor.flatten(start_dim, end_dim)` |
| `tensor.flip(axes)` | `tensor.flip(axes)` |
| `tensor.into_data()` | N/A |
| `tensor.into_primitive()` | N/A |
| `tensor.into_scalar()` | `tensor.item()` |
| `tensor.narrow(dim, start, length)` | `tensor.narrow(dim, start, length)` |
| `tensor.not_equal(other)` | `x != y` |
| `tensor.permute(axes)` | `tensor.permute(axes)` |
| `tensor.movedim(src, dst)` | `tensor.movedim(src, dst)` |
| `tensor.repeat(2, 4)` | `tensor.repeat([1, 1, 4])` |
| `tensor.reshape(shape)` | `tensor.view(shape)` |
| `tensor.shape()` | `tensor.shape` |
| `tensor.slice(ranges)` | `tensor[(*ranges,)]` |
| `tensor.slice_assign(ranges, values)` | `tensor[(*ranges,)] = values` |
| `tensor.squeeze(dim)` | `tensor.squeeze(dim)` |
| `tensor.to_data()` | N/A |
| `tensor.to_device(device)` | `tensor.to(device)` |
| `tensor.unsqueeze()` | `tensor.unsqueeze(0)` |
| `tensor.unsqueeze_dim(dim)` | `tensor.unsqueeze(dim)` |
| Burn | PyTorch Equivalent |
| ------------------------------------- | ------------------------------------------------------------------------ |
| `Tensor::cat(tensors, dim)` | `torch.cat(tensors, dim)` |
| `Tensor::empty(shape, device)` | `torch.empty(shape, device=device)` |
| `Tensor::from_primitive(primitive)` | N/A |
| `Tensor::stack(tensors, dim)` | `torch.stack(tensors, dim)` |
| `tensor.all()` | `tensor.all()` |
| `tensor.all_dim(dim)` | `tensor.all(dim)` |
| `tensor.any()` | `tensor.any()` |
| `tensor.any_dim(dim)` | `tensor.any(dim)` |
| `tensor.chunk(num_chunks, dim)` | `tensor.chunk(num_chunks, dim)` |
| `tensor.device()` | `tensor.device` |
| `tensor.dims()` | `tensor.size()` |
| `tensor.equal(other)` | `x == y` |
| `tensor.expand(shape)` | `tensor.expand(shape)` |
| `tensor.flatten(start_dim, end_dim)` | `tensor.flatten(start_dim, end_dim)` |
| `tensor.flip(axes)` | `tensor.flip(axes)` |
| `tensor.into_data()` | N/A |
| `tensor.into_primitive()` | N/A |
| `tensor.into_scalar()` | `tensor.item()` |
| `tensor.narrow(dim, start, length)` | `tensor.narrow(dim, start, length)` |
| `tensor.not_equal(other)` | `x != y` |
| `tensor.permute(axes)` | `tensor.permute(axes)` |
| `tensor.movedim(src, dst)` | `tensor.movedim(src, dst)` |
| `tensor.repeat_dim(dim, times)` | `tensor.repeat(*[times if i == dim else 1 for i in range(tensor.dim())])`|
| `tensor.repeat(sizes)` | `tensor.repeat(sizes)` |
| `tensor.reshape(shape)` | `tensor.view(shape)` |
| `tensor.shape()` | `tensor.shape` |
| `tensor.slice(ranges)` | `tensor[(*ranges,)]` |
| `tensor.slice_assign(ranges, values)` | `tensor[(*ranges,)] = values` |
| `tensor.squeeze(dim)` | `tensor.squeeze(dim)` |
| `tensor.to_data()` | N/A |
| `tensor.to_device(device)` | `tensor.to(device)` |
| `tensor.unsqueeze()` | `tensor.unsqueeze(0)` |
| `tensor.unsqueeze_dim(dim)` | `tensor.unsqueeze(dim)` |

### Numeric Operations

Expand Down
4 changes: 2 additions & 2 deletions crates/burn-autodiff/src/ops/bool_tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -132,11 +132,11 @@ impl<B: Backend, C: CheckpointStrategy> BoolTensorOps<Self> for Autodiff<B, C> {
B::bool_expand(tensor, shape)
}

fn bool_repeat<const D: usize>(
fn bool_repeat_dim<const D: usize>(
tensor: BoolTensor<B, D>,
dim: usize,
times: usize,
) -> BoolTensor<B, D> {
B::bool_repeat(tensor, dim, times)
B::bool_repeat_dim(tensor, dim, times)
}
}
4 changes: 2 additions & 2 deletions crates/burn-autodiff/src/ops/int_tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -162,12 +162,12 @@ impl<B: Backend, C: CheckpointStrategy> IntTensorOps<Self> for Autodiff<B, C> {
B::int_mean_dim(tensor, dim)
}

fn int_repeat<const D: usize>(
fn int_repeat_dim<const D: usize>(
tensor: IntTensor<B, D>,
dim: usize,
times: usize,
) -> IntTensor<B, D> {
B::int_repeat(tensor, dim, times)
B::int_repeat_dim(tensor, dim, times)
}

fn int_greater<const D: usize>(lhs: IntTensor<B, D>, rhs: IntTensor<B, D>) -> BoolTensor<B, D> {
Expand Down
10 changes: 6 additions & 4 deletions crates/burn-autodiff/src/ops/tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2418,7 +2418,7 @@ impl<B: Backend, C: CheckpointStrategy> FloatTensorOps<Self> for Autodiff<B, C>
B::float_argsort(tensor.primitive, dim, descending)
}

fn float_repeat<const D: usize>(
fn float_repeat_dim<const D: usize>(
tensor: FloatTensor<Self, D>,
dim: usize,
times: usize,
Expand All @@ -2437,7 +2437,7 @@ impl<B: Backend, C: CheckpointStrategy> FloatTensorOps<Self> for Autodiff<B, C>
impl<B: Backend, const D: usize> RetroForward for RetroRepeat<B, D> {
fn forward(&self, states: &mut BackwardStates, out_node: NodeID) {
let tensor = states.get_state::<B::FloatTensorPrimitive<D>>(&self.tensor_id);
let out = B::float_repeat(tensor, self.dim, self.times);
let out = B::float_repeat_dim(tensor, self.dim, self.times);
states.save(out_node, out)
}
}
Expand Down Expand Up @@ -2467,9 +2467,11 @@ impl<B: Backend, C: CheckpointStrategy> FloatTensorOps<Self> for Autodiff<B, C>
.stateful()
{
OpsKind::Tracked(prep) => {
prep.finish(dim, B::float_repeat(tensor.primitive, dim, times))
prep.finish(dim, B::float_repeat_dim(tensor.primitive, dim, times))
}
OpsKind::UnTracked(prep) => {
prep.finish(B::float_repeat_dim(tensor.primitive, dim, times))
}
OpsKind::UnTracked(prep) => prep.finish(B::float_repeat(tensor.primitive, dim, times)),
}
}

Expand Down
4 changes: 2 additions & 2 deletions crates/burn-autodiff/src/tests/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ mod permute;
mod pow;
mod recip;
mod relu;
mod repeat;
mod repeat_dim;
mod reshape;
mod select;
mod sigmoid;
Expand Down Expand Up @@ -133,6 +133,6 @@ macro_rules! testgen_all {
burn_autodiff::testgen_ad_sign!();
burn_autodiff::testgen_ad_expand!();
burn_autodiff::testgen_ad_sort!();
burn_autodiff::testgen_ad_repeat!();
burn_autodiff::testgen_ad_repeat_dim!();
};
}
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#[burn_tensor_testgen::testgen(ad_repeat)]
#[burn_tensor_testgen::testgen(ad_repeat_dim)]
mod tests {
use super::*;
use burn_tensor::{activation, TensorData};
Expand All @@ -12,7 +12,7 @@ mod tests {
let tensor_1 = TestAutodiffTensor::<2>::from_data(data_1, &device).require_grad();
let tensor_2 = TestAutodiffTensor::from_data(data_2, &device).require_grad();

let tensor_3 = tensor_2.clone().repeat(1, 3);
let tensor_3 = tensor_2.clone().repeat_dim(1, 3);

let tensor_3 = tensor_1.matmul(tensor_3);
let grads = tensor_3.backward();
Expand Down
2 changes: 1 addition & 1 deletion crates/burn-candle/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ mod tests {
// burn_tensor::testgen_powf!();

burn_tensor::testgen_random!();
burn_tensor::testgen_repeat!();
burn_tensor::testgen_repeat_dim!();
burn_tensor::testgen_reshape!();
burn_tensor::testgen_select!();
burn_tensor::testgen_sin!();
Expand Down
2 changes: 1 addition & 1 deletion crates/burn-core/src/nn/attention/mask.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ pub fn generate_autoregressive_mask<B: Backend>(
mask = mask.slice_assign([0..1, i..i + 1, i + 1..seq_length], values);
}

mask = mask.repeat(0, batch_size);
mask = mask.repeat_dim(0, batch_size);

mask.equal_elem(1_i64.elem::<i64>())
}
Expand Down
6 changes: 3 additions & 3 deletions crates/burn-core/src/nn/loss/cross_entropy.rs
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ impl<B: Backend> CrossEntropyLoss<B> {
* weights
.clone()
.reshape([1, nr_classes])
.repeat(0, batch_size);
.repeat_dim(0, batch_size);
let weights = weights.clone().gather(0, targets);
let tensor = Self::apply_mask_2d(tensor, mask);
tensor.sum().neg() / weights.sum()
Expand Down Expand Up @@ -224,7 +224,7 @@ impl<B: Backend> CrossEntropyLoss<B> {
fn apply_mask_2d(mut tensor: Tensor<B, 2>, mask: Option<Tensor<B, 1, Bool>>) -> Tensor<B, 2> {
if let Some(mask) = mask {
let [batch_size, nr_classes] = tensor.dims();
tensor = tensor.mask_fill(mask.reshape([batch_size, 1]).repeat(1, nr_classes), 0);
tensor = tensor.mask_fill(mask.reshape([batch_size, 1]).repeat_dim(1, nr_classes), 0);
}

tensor
Expand Down Expand Up @@ -312,7 +312,7 @@ mod tests {
* targets_logits
* Tensor::<TestBackend, 1>::from_floats(weights.as_slice(), &device)
.unsqueeze()
.repeat(0, 4);
.repeat_dim(0, 4);
let loss_2 = loss_2.sum().neg() / (1. + 2. + 3. + 5.);
loss_1.into_data().assert_approx_eq(&loss_2.into_data(), 3);
}
Expand Down
4 changes: 2 additions & 2 deletions crates/burn-core/src/nn/rope_encoding.rs
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ impl RotaryEncodingConfig {
.float()
.unsqueeze()
.transpose()
.repeat(1, self.d_model / 2)
.repeat_dim(1, self.d_model / 2)
* theta_i.unsqueeze();

// Convert frequency values to complex numbers (polar form)
Expand All @@ -71,7 +71,7 @@ impl RotaryEncodingConfig {
.reshape([self.max_sequence_length, 2, self.d_model / 2])
.transpose()
.unsqueeze_dim::<4>(2)
.repeat(2, 2)
.repeat_dim(2, 2)
.reshape([self.max_sequence_length, self.d_model, 2]);

RotaryEncoding {
Expand Down
18 changes: 9 additions & 9 deletions crates/burn-fusion/src/ops/boolean.rs
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ use burn_tensor::{
BaseOperationDescription, BinaryOperationDescription, BoolOperationDescription,
CatOperationDescription, ExpandOperationDescription, FlipOperationDescription,
HandleContainer, OperationDescription, PermuteOperationDescription,
RepeatOperationDescription, ReshapeDescription, SliceAssignOperationDescription,
RepeatDimOperationDescription, ReshapeDescription, SliceAssignOperationDescription,
SliceOperationDescription, SwapDimsDescription, UnaryOperationDescription,
},
Device, Shape,
Expand Down Expand Up @@ -575,22 +575,22 @@ impl<B: FusionBackend> BoolTensorOps<Self> for Fusion<B> {
out
}

fn bool_repeat<const D: usize>(
fn bool_repeat_dim<const D: usize>(
tensor: BoolTensor<Self, D>,
dim: usize,
times: usize,
) -> BoolTensor<Self, D> {
#[derive(new)]
struct RepeatOps<B: FusionBackend, const D: usize> {
desc: RepeatOperationDescription,
struct RepeatDimOps<B: FusionBackend, const D: usize> {
desc: RepeatDimOperationDescription,
_b: PhantomData<B>,
}

impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatOps<B, D> {
impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatDimOps<B, D> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let tensor = handles.get_bool_tensor::<B, D>(&self.desc.tensor);

let output = B::bool_repeat::<D>(tensor, self.desc.dim, self.desc.times);
let output = B::bool_repeat_dim::<D>(tensor, self.desc.dim, self.desc.times);

handles.register_bool_tensor::<B, D>(&self.desc.out.id, output);
}
Expand All @@ -601,16 +601,16 @@ impl<B: FusionBackend> BoolTensorOps<Self> for Fusion<B> {
shape[dim] *= times;
let out = tensor.client.tensor_uninitialized(shape, DType::Bool);

let desc = RepeatOperationDescription {
let desc = RepeatDimOperationDescription {
tensor: tensor.into_description(),
dim,
times,
out: out.to_description_out(),
};
out.client.register(
vec![stream],
OperationDescription::BaseBool(BaseOperationDescription::Repeat(desc.clone())),
RepeatOps::<B, D>::new(desc),
OperationDescription::BaseBool(BaseOperationDescription::RepeatDim(desc.clone())),
RepeatDimOps::<B, D>::new(desc),
);

out
Expand Down
16 changes: 8 additions & 8 deletions crates/burn-fusion/src/ops/float.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1696,22 +1696,22 @@ impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
out
}

fn float_repeat<const D: usize>(
fn float_repeat_dim<const D: usize>(
tensor: FloatTensor<Self, D>,
dim: usize,
times: usize,
) -> FloatTensor<Self, D> {
#[derive(new)]
struct RepeatOps<B: FusionBackend, const D: usize> {
desc: RepeatOperationDescription,
struct RepeatDimOps<B: FusionBackend, const D: usize> {
desc: RepeatDimOperationDescription,
_b: PhantomData<B>,
}

impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatOps<B, D> {
impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatDimOps<B, D> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let tensor = handles.get_float_tensor::<B, D>(&self.desc.tensor);

let output = B::float_repeat::<D>(tensor, self.desc.dim, self.desc.times);
let output = B::float_repeat_dim::<D>(tensor, self.desc.dim, self.desc.times);

handles.register_float_tensor::<B, D>(&self.desc.out.id, output);
}
Expand All @@ -1724,16 +1724,16 @@ impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
.client
.tensor_uninitialized(shape, B::FloatElem::dtype());

let desc = RepeatOperationDescription {
let desc = RepeatDimOperationDescription {
tensor: tensor.into_description(),
dim,
times,
out: out.to_description_out(),
};
out.client.register(
vec![stream],
OperationDescription::BaseFloat(BaseOperationDescription::Repeat(desc.clone())),
RepeatOps::<B, D>::new(desc),
OperationDescription::BaseFloat(BaseOperationDescription::RepeatDim(desc.clone())),
RepeatDimOps::<B, D>::new(desc),
);

out
Expand Down
16 changes: 8 additions & 8 deletions crates/burn-fusion/src/ops/int.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1755,22 +1755,22 @@ impl<B: FusionBackend> IntTensorOps<Self> for Fusion<B> {
out
}

fn int_repeat<const D: usize>(
fn int_repeat_dim<const D: usize>(
tensor: IntTensor<Self, D>,
dim: usize,
times: usize,
) -> IntTensor<Self, D> {
#[derive(new)]
struct RepeatOps<B: FusionBackend, const D: usize> {
desc: RepeatOperationDescription,
struct RepeatDimOps<B: FusionBackend, const D: usize> {
desc: RepeatDimOperationDescription,
_b: PhantomData<B>,
}

impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatOps<B, D> {
impl<const D: usize, B: FusionBackend> Operation<B::FusionRuntime> for RepeatDimOps<B, D> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let tensor = handles.get_int_tensor::<B, D>(&self.desc.tensor);

let output = B::int_repeat::<D>(tensor, self.desc.dim, self.desc.times);
let output = B::int_repeat_dim::<D>(tensor, self.desc.dim, self.desc.times);

handles.register_int_tensor::<B, D>(&self.desc.out.id, output);
}
Expand All @@ -1783,16 +1783,16 @@ impl<B: FusionBackend> IntTensorOps<Self> for Fusion<B> {
.client
.tensor_uninitialized(shape, B::IntElem::dtype());

let desc = RepeatOperationDescription {
let desc = RepeatDimOperationDescription {
tensor: tensor.into_description(),
dim,
times,
out: out.to_description_out(),
};
out.client.register(
vec![stream],
OperationDescription::BaseInt(BaseOperationDescription::Repeat(desc.clone())),
RepeatOps::<B, D>::new(desc),
OperationDescription::BaseInt(BaseOperationDescription::RepeatDim(desc.clone())),
RepeatDimOps::<B, D>::new(desc),
);

out
Expand Down
Loading
Loading